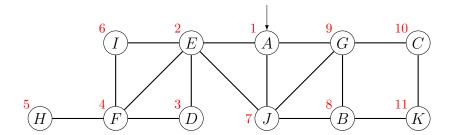

5d

Aufgabe 1 (2P)


(a) Adjazenzmatrix

	a	b	c	d	e
\overline{a}	0	0	0	1	1
b	0	0	0	0	0
c	1	0	0	1	0
d	0	0	0	0	1
e	1	0	0	1 0 1 0 0	0

(b) Adjazenzliste

von	nach
\overline{a}	d, e
b	_
c	a, d
d	e
e	a'

Aufgabe 2 (2P)

A E D F H I J B G C K

A

B

C

D

E

F

G

H

Ι

J K

Aufgabe 3 (4P)

	$\mid A \mid$	B	C	D
\overline{A}	0	5	4	30
B	5	0	1	2
C	4	1	0	3
D	30	2	3	0

(a) NNH mit Start in A:

$$A \xrightarrow{4} C \xrightarrow{1} B \xrightarrow{2} D \xrightarrow{30} A$$
 (37)

- (b) Brute Force-Methode (wähle Startpunkt A)
 - (1) ABCDA: 5 + 1 + 3 + 30 = 39
 - (2) ABDCA: 5 + 2 + 3 + 4 = 14
 - (3) ACBDA: 4 + 1 + 2 + 30 = 37
 - (4) ACDBA: durchläuft (2) rückwärts
 - (5) ADBCA: durchläuft (3) rückwärts
 - (6) ADCBA: durchläuft (1) rückwärts

Somit hat die Lösung in (a) den zweiten (schlechten) Rang.

Aufgabe 4 (2P)

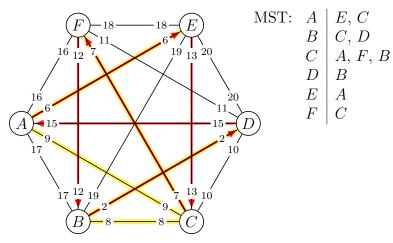
	$\mid A \mid$	B	C	D
\overline{A}	0	5	2	8
B	5	0	6	9
C	2	6	0	5
D	8	9	5	0

Beginne mit BD = 9 und prüfe \triangle -Ungleichung für A und C:

$$9 = BD \le BA + AD = 5 + 8 = 13$$
 wahr

$$9 = BD \le BC + CD = 6 + 5 = 11$$
 wahr

Wähle AD = 8 und prüfe \triangle -Ungleichung für B und C:


$$8 = AD \le AB + BD = 5 + 9 = 14$$
 wahr

$$8 = AD \le AC + CD = 2 + 5 = 7 \quad \text{falsch}$$

Da (mindestens) eine Dreiecksungleichung verletzt ist, ist die Matrix nicht metrisch.

2

Aufgabe 5 (4P)

DFS:
$$A \xrightarrow{6} E \xrightarrow{13} C \xrightarrow{7} F \xrightarrow{12} B \xrightarrow{2} D \xrightarrow{15} A$$
 (55)

zum Vergleich eine optimale Tour: $A \xrightarrow{9} C \xrightarrow{8} B \xrightarrow{2} D \xrightarrow{11} F \xrightarrow{18} E \xrightarrow{6} A$ (54)

Aufgabe 6 (2P)

- (a) Beschreibe einen Vorteil der MST-Heuristik gegenüber der Nearest-Neighbor-Heuristik.

 Die MST-Heuristik liefert ist im Worst Case eine Lösung, die höchstens doppelt so lang ist, wie eine optimale Rundreise. Für die NNH gibt es keine solche Garantie.
- (b) Beschreibe einen Vorteil der Nearest-Neighbor-Heuristik gegenüber der Brute Force-Methode.

Die NNH ist wesentlich schneller (polynomielle Laufzeit) als die Brute Force-Methode mit faktorieller Laufzeit.

Aufgabe 7 (2P)

Ein Einkauf mit Liste ist ein Lösungsverfahren.

- Es ist endlich, da Einkaufslisten nicht unendlich lange sind.
- Es ist nicht deterministisch, da nicht gesagt wird, wie bei der Suche vorgegangen werden soll.
- Es ist möglicherweise nicht effektiv, wenn der Artikel (derzeit) im Sortiment fehlt.

Aufgabe 8 (2P)

$$ggT(30, 12) = (18, 12) = (6, 12) \stackrel{s}{=} (12, 6)$$
$$= (6, 6) = (0, 6) \stackrel{s}{=} (6, 0) = (6, 0) = 6$$

Aufgabe 9 (2P)

$$ggT(32, 18) = (18, 14) = (14, 4) = (4, 2) = (2, 0) = 2$$

Aufgabe 10 (2P)

(a)
$$T(n) = 4n^3 + 2n + 5n^4 + 1 \in O(n^4)$$

(b)
$$T(n) = 5 \cdot 2^{n+1} = 5 \cdot 2^n \cdot 2^1 = 10 \cdot 2^n \in O(2^n)$$

(c)
$$T(n) = (4n^3 + 3)(5n - 4)(7n^4 - 6) \in O(n^8)$$

(d)
$$T(n) = \log_2(50n^3) = \log_2(50) + 3\log_2(n) \in O(\log_2(n))$$

Aufgabe 11 (2P)

$$O(n^2)$$
 bedeutet dass $T(n) = C \cdot n^2$

$$T(100) = C \cdot 100^2 = 3 \,\mathrm{s}$$

Man könnte jetzt diesen Term nach C auflösen (ohne ihn auszurechnen) und diesen Ausdruck in die Formel von T(300) einsetzen.

Etwas einfacher ist es jedoch, den Term T(300) soweit umzuformen, dass der obige Ausdruck $(C \cdot 100^2)$ darin erkennbar wird, so dass man die 3 Sekunden direkt dafür einsetzen kann:

$$T(300) = C \cdot 300^2 = C \cdot (3 \cdot 100)^2 = C \cdot 3^2 \cdot 100^2$$
$$= 9 \cdot C \cdot 100^2 = 9 \cdot 3 \text{ s} = 27 \text{ s}$$