Binärdarstellung von Zahlen

Prüfungsvorbereitung

Berechne die Zweierpotenzen.

(a) 2^9

(c) 2^6

(e) 2^3

(b) 2^{10}

(d) 2^0

(f) 2

(a) $2^9 = 512$

(c) $2^6 = 64$

(e) $2^3 = 8$

(b) $2^{10} = 1024$

(d) $2^0 = 1$

(f) $2^5 = 32$

Berechne die Zweierlogarithmen.

(a) $\log_2 512$

(d) $\log_2 64$

(b) log₂ 1024

(e) log₂ 256

(c) $\log_2 32$

(f) log₂ 128

- (a) $\log_2 512 = 9$
- (b) $\log_2 1024 = 10$
- (c) $\log_2 32 = 5$

- (d) $\log_2 64 = 6$
- (e) $\log_2 256 = 8$
- (f) $\log_2 128 = 7$

Bestimme den Wert des Ausdrucks.

(a) |46.508|

(d) [-59]

(b) |14|

(e) $\lfloor \frac{7}{3} \rfloor$

(c) [-87.112]

(f) $\lceil \sqrt{23} \rceil$

(a)
$$\lfloor 46.508 \rfloor = 46$$

(b)
$$|14| = 14$$

(c)
$$[-87.112] = -87$$

(d)
$$[-59] = -59$$

(e)
$$\left\lfloor \frac{7}{3} \right\rfloor = \left\lfloor 2\frac{1}{3} = 2 \right\rfloor$$

(f)
$$\lceil \sqrt{23} \rceil < \lceil \sqrt{25} \rceil = 5$$

Berechne die Divisionsreste.

- (a) 17 mod 3
- (b) 36 mod 4
- (c) 907 mod 2

- (d) 8775 mod 100
- (e) 1234 mod 2
- (f) 7 mod 31

- (a) $17 \mod 3 = 2$
- (b) $36 \mod 4 = 0$
- (c) $907 \mod 2 = 1$

- (d) $8775 \mod 100 = 75$
- (e) $1234 \mod 2 = 0$
- (f) $7 \mod 31 = 7$

Die Sprache L besteht aus allen Wörtern der Länge 2 über dem Alphabet $\Sigma = \{a, b, c\}$. Stelle diese Sprache als Menge $L = \{\dots\}$ dar.

$$\Sigma = \{a, b, c\}$$

$$L = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$$

Die Sprache L besteht aus allen Wörtern des Alphabets $\Sigma=\{0,1\}$, die aus höchstens 2 Zeichen bestehen. Stelle diese Sprache als Menge $L=\{\dots\}$ dar.

$$\Sigma = \{0,1\}$$

$$\Sigma = \{0,1\}$$

Alle Zeichen der Länge 2: 00, 01, 10, 11

$$\Sigma = \{0,1\}$$

Alle Zeichen der Länge 2: 00, 01, 10, 11

Alle Zeichen der Länge 1: 0, 1

$$\Sigma = \{0,1\}$$

Alle Zeichen der Länge 2: 00, 01, 10, 11

Alle Zeichen der Länge 1: 0, 1

Alle Zeichen der Länge 0: ε (das leere Wort)

$$\Sigma = \{0, 1\}$$

Alle Zeichen der Länge 2: 00, 01, 10, 11

Alle Zeichen der Länge 1: 0, 1

Alle Zeichen der Länge 0: ε (das leere Wort)

$$L = \{\varepsilon, 0, 1, 00, 01, 10, 11\}$$

Gegeben ist das Alphabet $\Sigma = \{0, 1\}.$

- (a) Zähle alle Wörter der Länge 3 mit Zeichen aus Σ auf.
- (b) Wie viele Wörter der Länge 5 mit Zeichen aus Σ gibt es insgesamt?

$$\Sigma = \{0,1\}$$

- (a) Alle Wörter der Länge 3 mit Zeichen aus Σ : 000, 001, 010, 011, 100, 101, 110, 111
- (b) Anzahl der Wörter der Länge 5 mit Zeichen aus Σ : $2^5 = 32$

Was ist ein Code?

Ein Code ist eine Abbildung (Synonym: Funktion), die jedem Wort w einer Sprache L_1 umkehrbar eindeutig ein Wort v einer Sprache L_2 zuordnet.

Decodiere den Morsecode

mit Hilfe der unten stehenden Codetabelle. Die Schrägstriche sind Wortgrenzen.

. –	A
	В
	С
	D
•	E
	F

•	_ ~	
	Н	 N
	Ι	 0
	J	 Р
	K	 Q
	L	 R

	S
-	Т
–	U
	٧
	W
	Х

 Y
 Z

	.								
Н	E	L	L	0	W	0	R	L	D

Zähle zwei verschiedenen Codes auf und beschreibe, welche "Wörter" auf welche "Wörter" abgebildet werden.

- ▶ Unicode: Ordnet jedem Schriftzeichen dieser Welt eindeutig eine Nummer zu.
- ► IATA-Flughafen-Code: Ordnet einem Flughafen einen Code aus drei Buchstaben zu. Beispiele:

Flughafen	IATA-Code
Buochs	BXO
Zürich	ZRH

▶ Morsecode: Ordnet bestimmten Buchstaben, Ziffern und Satzzeichen eine Folge aus Punkten und Strichen (kurzen und langen Symbolen) zu.

Binärdarstellung von Zahlen (Kapitel 2) Prüfungsvorbereitung

Wie viele Zustände (für Zahlen, Zeichen, Farben, ...) lassen sich mit der folgenden Anzahl Bits codieren?

(a) 3 Bits

(c) 5 Bits

(e) 6 Bits

(b) 2 Bits

(d) 8 Bits

(f) 7 Bits

- (a) 3 Bits \Rightarrow 8 Zustände (d) 8 Bits \Rightarrow 256 Zustände
- (b) 2 Bits \Rightarrow 4 Zustände (e) 6 Bits \Rightarrow 64 Zustände
- (c) 5 Bits \Rightarrow 32 Zustände (f) 7 Bits \Rightarrow 128 Zustände

Wie Bits sind mindestens nötig, um die jeweilige Anzahl von Zuständen binär zu codieren?

- (a) Die 60 Minuten einer Stunde
- (b) Die sieben Zwerge
- (c) Das Ergebnis eines Münzwurfs (Kopf oder Zahl)
- (d) Die knapp 460 Schülerinnen und Schüler am Kollegi (Stand Dezember 2022)
- (e) Die rund 84 Millionen Einwohner von Deutschland (Stand Juni 2022)

- (a) Die 60 Minuten einer Stunde $\Rightarrow \lceil \log_2 60 \rceil = \log_2 64 = 6$ Bit
- (b) Die sieben Zwerge $\Rightarrow \lceil \log_2 7 \rceil = \log_2 8 = 3$ Bit
- (c) Das Ergebnis eines Münzwurfs (Kopf oder Zahl) $\Rightarrow \lceil \log_2 2 \rceil = \log_2 2 = 1$ Bit
- (d) Die 460 Kollegischüler $\Rightarrow \lceil \log_2 460 \rceil = \log_2 512 = 9$ Bit
- (e) Die 84 Millionen Einwohner Deutschlands: Wir ersetzen 10³ näherungsweise durch 2¹⁰ und machen die Zahl etwas grösser, um sie als Zweierpotenz darstellen zu können.
 - $84 \cdot 10^6 = 84 \cdot (10^3)^2 \approx 84 \cdot (2^{10})^2 = 84 \cdot 2^{20} \le 128 \cdot 2^{20} = 2^7 \cdot 2^{20} = 84 \cdot 2^{20} = 2^7 \cdot$

Schreibe den Namen Abkürzung mit dem SI-Präfix in Worten aus und gib die zugehörige Menge der Bytes an.

(a) 1 KB

(c) 1 TB

(b) 1 GB

(d) 1 PB

- (a) $1 \text{ KB} = 1 \text{ Kilobyte} = 10^3 \text{ Byte}$
- (b) $1 \text{ GB} = 1 \text{ Gigabyte} = 10^9 \text{ Byte}$
- (c) $1 \text{ TB} = 1 \text{ Terabyte} = 10^{12} \text{ Byte}$
- (d) $1 \text{ PB} = 1 \text{ Petabyte} = 10^{15} \text{ Byte}$

Schreibe den Namen Abkürzung mit dem IEC-Präfix in Worten aus und gib die zugehörige Menge der Bytes an.

(a) 1 KiB

(c) 1 TiB

(b) 1 GiB

(d) 1 MiB

- (a) $1 \text{ KiB} = 1 \text{ Kilobinarybyte} = 2^{10} \text{ Byte}$
- (b) 1 GiB = 1 Gigabinarybyte = 2^{30} Byte
- (c) $1 \text{ TiB} = 1 \text{ Terabinarybyte} = 2^{40} \text{ Byte}$
- (d) $1 \text{ MiB} = 1 \text{ Megabinarybyte} = 2^{20} \text{ Byte}$

Wie viele Songs im MP3-Format haben auf einem USB-Stick mit einer Kapazität von 64 GByte platz, wenn ein Song durchschnittlich 5 MByte Speicherplatz benötigt? Runde "grosszügig".

$$\begin{split} \text{Anzahl Songs} &= \frac{64\,\text{GByte}}{5\,\text{MByte/Song}} = \frac{64\cdot10^9\,\text{Byte}}{5\cdot10^6\,\text{Byte/Song}} \\ &= \frac{64\,000}{5}\,\text{Songs} \approx \frac{65\,000}{5}\,\text{Songs} \approx 13\,000\,\text{Songs} \end{split}$$

Eine 1 GByte grosse Datei wird über eine Netzwerkverbindung verschickt, die Daten mit 100 MBit pro Sekunde überträgt. Wie viele Sekunden dauert die Übertragung?

$$\begin{split} t &= \frac{\mathsf{Datenmenge}}{\mathsf{\ddot{U}bertragungsrate}} = \frac{1\,\mathsf{GByte}}{100\,\mathsf{MBit/s}} = \frac{10^9\,\mathsf{Byte}}{100\cdot 10^6\,\mathsf{Bit/s}} \\ &= \frac{10^9\cdot 8\,\mathsf{Bit}}{10^8\,\mathsf{Bit/s}} = 80\,\mathsf{s} \end{split}$$

oder etwas kürzer:

$$t = \frac{1\,\mathrm{GByte}}{100\,\mathrm{MBit/s}} = \frac{1000\,\mathrm{MByte}}{100\,\mathrm{MBit/s}} = \frac{8000\,\mathrm{MBit}}{100\,\mathrm{MBit/s}} = \frac{80}{1/\mathrm{s}} = 80\,\mathrm{s}$$

Der Download einer Datei dauert 10 Minuten bei einer durchschnittlichen Übertragungsrate von 32 MBit pro Sekunde. Wie gross ist die Datei in GByte?

$$\begin{split} \ddot{\text{U}}\text{bertragungsrate} &= \frac{\text{Datenmenge}}{\text{Dauer}} \\ &\text{Datenmenge} = \ddot{\text{U}}\text{bertragungsrate} \cdot \text{Dauer} \\ &= 32 \, \frac{\text{MBit}}{\text{s}} \cdot 10 \, \text{Minuten} \quad \text{\tiny (8\,Bit\,=\,1Byte,\,1\,Minute\,=\,60\,Sekunden)} \\ &= 4 \, \frac{\text{MByte}}{\text{s}} \cdot 600 \, \text{s} = 2400 \, \text{MByte} = 2.4 \, \text{GByte} \end{split}$$

Stelle 1010001_2 im Dezimalsystem dar.

$$1010001_2 = 1 \cdot 2^6 + 1 \cdot 2^4 + 1 \cdot 2^0 = 64 + 16 + 1 = 81$$

Stelle 142_7 im Dezimalsystem dar.

$$142_7 = 1 \cdot 7^2 + 4 \cdot 7^1 + 2 \cdot 7^0 = 49 + 28 + 2 = 79$$

Stelle 77_{11} im Dezimalsystem dar.

$$77_{11} = 7 \cdot 11^1 + 7 \cdot 11^0 = 77 + 7 = 84$$

Stelle $\mathsf{B8}_{\mathsf{16}}$ im Dezimalsystem dar.

$$\mathsf{B8}_{16} = 11 \cdot 16^1 + 8 \cdot 16^0 = 176 + 8 = 184$$

Stelle 54_{10} im Zahlensystem zur Basis 2 dar.

Stelle 86_{10} im Zahlensystem zur Basis 5 dar.

3 : 5 = 0 Rest 3

Stelle 202_{10} im Zahlensystem zur Basis 16 dar.

 $202 \quad : \quad 16 \quad = \quad 12 \quad \text{Rest} \quad A \qquad \Rightarrow \quad 202_{10} = \text{CA}_{16}$

12 : 16 = 0 Rest C

Stelle 1010111111_2 im Hexadezimalsystem dar, ohne über das Dezimalsystem zu gehen.

0	0	1	0	1	0	1	1	1	1	1	1
	2	2			E	3			F	=	

Stelle $7C1_{16}$ im Binärsystem dar, ohne über das Dezimalsystem zu gehen.

	7	7		С				1			
0	1	1	1	1	1	0	0	0	0	0	1

Gib die grösste positive und die kleinste negative Zahl (im Zehnersystem) an, die mit 5 Bit im Zweierkomplement dargestellt werden können.

 $\mbox{gr\"{o}sste positive Zahl:} \qquad 2^{5-1}-1=15$

 $\mbox{kleinste negative Zahl:} \quad -2^{5-1} = -16$

Gib die grösste positive und die kleinste negative Zahl (im Zehnersystem) an, die mit 7 Bit im Zweierkomplement dargestellt werden können.

grösste positive Zahl: $2^{7-1}-1=63$

 $\mbox{kleinste negative Zahl:} \quad -2^{7-1} = -64$

Addiere die beiden Binärzahlen.

Addiere die beiden Binärzahlen.

	0	1	1	0	0	1	0	1	
+	0	0	1	1	0	1	1	0	
	0	0	1	0	1	1	1	1	

Bilde das Zweierkomplement der Binärzahl $n = 01001101_2$.

	0	1	0	0	1	1	0	1	(n)
	1	0	1	1	0	0	1	0	(-n-1)
+	0	0	0	0	0	0	0	1	(1)
=	1	0	1	1	0	0	1	1	$\overline{(-n)}$

Bilde das Zweierkomplement der Binärzahl $n=11110110_2$.

	1	1	1	1	0	1	1	0	(n)
	0	0	0	0	1	0	0	1	(-n-1)
+	0	0	0	0	0	0	0	1	(1)
=	0	0	0	0	1	0	1	0	(-n)

Bilde das Zweierkomplement der Binärzahl $n = 00010000_2$.

	0	0	0	1	0	0	0	0	(n)
	1	1	1	0	1	1	1	1	(-n-1)
+	0	0	0	0	0	0	0	1	(1)
=	1	1	1	1	0	0	0	0	$\overline{(-n)}$

Stelle die Zahl -17 binär als Byte im Zweierkomplement dar.

Stelle die Zahl -54 binär als Byte im Zweierkomplement dar.

Stelle die Zahl -128 binär als Byte im Zweierkomplement dar.

$$128 = 128$$

	1	0	0	0	0	0	0	0	(128)
	0	1	1	1	1	1	1	1	(-129)
+	0	0	0	0	0	0	0	1	(1)
=	1	0	0	0	0	0	0	0	(-128)

Zeige, wie die Rechnung 71 - 28 von einem Prozessor ausgeführt wird, der 8-Bit-Worte im Zweierkomplement verarbeitet.

Zweierkomplement von 28:

Zeige, wie die Rechnung 33-46 von einem Prozessor ausgeführt wird, der 8-Bit-Worte im Zweierkomplement verarbeitet.

Zweierkomplement von 46:

$$\frac{0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad (46)}{1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad (-47)} \\
+ \quad 0 \quad 1 \quad (1)}{= \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad (-46)} \\
33 - 46 = 33 + (-46): \\
0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad (33) \\
+ \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad (-46) \\
= \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad (-13)$$

Addiere die beiden 8-Bit-Binärzahlen im Zweierkomplement und gib an, ob das Resultat positiv, negativ oder ungültig ist.

Das Resultat ist negativ.

Addiere die beiden 8-Bit-Binärzahlen im Zweierkomplement und gib an, ob das Resultat positiv, negativ oder ungültig ist.

Das Resultat ist ungültig.

Addiere die beiden 8-Bit-Binärzahlen im Zweierkomplement und gib an, ob das Resultat positiv, negativ oder ungültig ist.

Das Resultat ist positiv.

Addiere die beiden 8-Bit-Binärzahlen im Zweierkomplement und gib an, ob das Resultat positiv, negativ oder ungültig ist.

Das Resultat ist ungültig.

Berechne binär 00000100 · 00010001.

 $00000100 \cdot 00010001 = 01000100$

Berechne binär 00110000 : 00001000

00110000:00001000=00000110

Mulitpliziere beiden vorzeichenlosen Binärzahlen 00000101 und 00001011 mit der Shift-and-add-Methode.

Mulitpliziere beiden vorzeichenlosen Binärzahlen 00010111 und 00000011 mit der Shift-and-add-Methode.

	0	0	0	0	0	0	1	1
+	0	0	0	0	0	1	1	0
=	0	0	0	0	1	0	0	1
+	0	0	0	0	1	1	0	0
=	0	0	0	1	0	1	0	1
+	0	0	1	1	0	0	0	0
=	0	1	0	0	0	1	0	1

Hinweis: Der Bias für 32 Bit-Gleitkommazahlen im IEEE 754-Format beträgt 127.

Stelle die Zahl 0.03125 binär dar (kein IEEE 754-Format).

$$0.03125 = 0.00001_2$$

Die Binärziffern werden von oben nach unten abgelesen.

Stelle die Zahl 0.4 binär dar (kein IEEE 754-Format).

```
0.4
                           8.0
2
       8.0
                       +
                           0.6
       0.6
                           0.2
                       +
       0.2
                  0
                           0.4
                       +
       0.4
                           8.0
            =
                       +
2
       8.0
                           0.6
            =
                       +
2
       0.6
                           0.2
            =
                       +
2
       0.2
                           0.4
                  0
                       +
2
```

```
0.4
                  0.8
    8.0
               + 0.6
    0.6
       = 1 +
                 0.2
            0 +
    0.2
                 0.4
    0.4
       =
                 0.8
       = 1 + 0.6
  . 0.8
    0.6
                 0.2
2 \cdot 0.2 = 0 +
                 0.4
```

$$0.4 = 0.01100110 \dots_2 = 0.\overline{0110}_2$$

Stelle die Zahl 30.75 im IEEE 754-Format mit 32 Bit dar.

Aufgabe 5.3 30.75

30.75

Vorzeichen: S = 0

30.75

Vorzeichen: S = 0

Binärdarstellung: $30.75 = 16 + 8 + 4 + 2 + \frac{1}{2} + \frac{1}{4} = 11110.11_2$

30.75

Vorzeichen: S = 0

Binärdarstellung: $30.75 = 16 + 8 + 4 + 2 + \frac{1}{2} + \frac{1}{4} = 11110.11_2$

Normalform: $(1.)111011_2 \cdot 2^4$

30.75

Vorzeichen: S = 0

Binärdarstellung: $30.75 = 16 + 8 + 4 + 2 + \frac{1}{2} + \frac{1}{4} = 11110.11_2$

Normalform: $(1.)111011_2 \cdot 2^4$

Exponent: $E = 4 + 127 = 131 = 128 + 2 + 1 = 10000011_2$

30.75

Vorzeichen: S = 0

Binärdarstellung: $30.75 = 16 + 8 + 4 + 2 + \frac{1}{2} + \frac{1}{4} = 11110.11_2$

Normalform: $(1.)111011_2 \cdot 2^4$

Exponent: $E = 4 + 127 = 131 = 128 + 2 + 1 = 10000011_2$

Mantisse: M = 111011 (die führende 1 wird nicht gespeichert)

30.75

Vorzeichen: S = 0

Binärdarstellung: $30.75 = 16 + 8 + 4 + 2 + \frac{1}{2} + \frac{1}{4} = 11110.11_2$

Normalform: $(1.)111011_2 \cdot 2^4$

Exponent: $E = 4 + 127 = 131 = 128 + 2 + 1 = 10000011_2$

Mantisse: M = 111011 (die führende 1 wird nicht gespeichert)

Stelle die Zahl -75 im IEEE 754-Format mit 32 Bit dar.

-75

-75

Vorzeichen:

-75

Vorzeichen: S=1

-75

Vorzeichen: S=1

Binärdarstellung: 75

-75

Vorzeichen: S = 1

Binärdarstellung: 75 = 64 + 8 + 2 + 1

-75

Vorzeichen: S = 1

Binärdarstellung: 75 = 64 + 8 + 2 + 1 = 1001011

-75

Vorzeichen: S = 1

Binärdarstellung: 75 = 64 + 8 + 2 + 1 = 1001011

Normalform: $(1.)001011 \cdot 2^6$

-75

Vorzeichen: S = 1

Binärdarstellung: 75 = 64 + 8 + 2 + 1 = 1001011

Normalform: $(1.)001011 \cdot 2^6$

Exponent: E = 6 + 127 = 133 = 128 + 4 + 1 = 10000101

-75

Vorzeichen: S = 1

Binärdarstellung: 75 = 64 + 8 + 2 + 1 = 1001011

Normalform: $(1.)001011 \cdot 2^6$

Exponent: E = 6 + 127 = 133 = 128 + 4 + 1 = 10000101

Mantisse: M = 001011 (die führende 1 wird nicht gespeichert)

-75

Vorzeichen: S = 1

Binärdarstellung: 75 = 64 + 8 + 2 + 1 = 1001011

Normalform: $(1.)001011 \cdot 2^6$

Exponent: E = 6 + 127 = 133 = 128 + 4 + 1 = 10000101

Mantisse: M = 001011 (die führende 1 wird nicht gespeichert)

Stelle die folgende IEEE 754-Zahl dezimal dar.

Vorzeichen:
$$S = 0$$

$$s = (-1)^S = +1$$

Vorzeichen:
$$S = 0$$

$$s = (-1)^S = +1$$

Exponent:
$$E = 011111101_2 = 64 + 32 + 16 + 8 + 4 + 1 = 125$$

$$e = 125 - 127 = -2$$

Vorzeichen:
$$S = 0$$

 $s = (-1)^S = +1$

Exponent:
$$E = 011111101_2 = 64 + 32 + 16 + 8 + 4 + 1 = 125$$

$$e = 125 - 127 = -2$$

Mantisse:
$$M = 0$$

$$m = 1.0_2$$

Vorzeichen:
$$S = 0$$

 $s = (-1)^S = +1$

Exponent:
$$E = 011111101_2 = 64 + 32 + 16 + 8 + 4 + 1 = 125$$

 $e = 125 - 127 = -2$

Mantisse:
$$M = 0$$

 $m = 1.0_2$

Normalform:
$$s \cdot m \cdot 2^e = 1.0_2 \cdot 2^{-2} = 0.01_2 = 0.25$$

Stelle die folgende IEEE 754-Zahl dezimal dar.

Vorzeichen:
$$S = 1$$

$$s = (-1)^S = -1$$

Vorzeichen:
$$S=1$$

$$s = (-1)^S = -1$$

Exponent:
$$E = 100000010_2 = 128 + 2 = 130$$

$$e = 130 - 127 = 3$$

Vorzeichen:
$$S=1$$

$$s = (-1)^S = -1$$

Exponent:
$$E = 100000010_2 = 128 + 2 = 130$$

$$e = 130 - 127 = 3$$

Mantisse:
$$M = 1111$$

$$m=1.1111_2$$

Vorzeichen:
$$S = 1$$

$$s = (-1)^S = -1$$

Exponent:
$$E = 100000010_2 = 128 + 2 = 130$$

$$e = 130 - 127 = 3$$

Mantisse:
$$M = 1111$$

$$m = 1.1111_2$$

Normalform:
$$s \cdot m \cdot 2^e = -1.1111_2 \cdot 2^3 = -1111.1_2 = -15.5$$

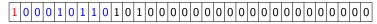
Welchen Wert stellen die folgenden Bitmuster im IEEE 754-Standard dar?

Multipliziere die IEEE 754-Binärzahl mit 8, ohne ins Dezimalsystem umzurechnen.

Multiplikation mit $8=2^3$ bedeutet, dass zum Exponenten $3=11_2$ addiert werden muss. Das Vorzeichen und die Mantisse bleiben unverändert.

Multiplikation mit $8=2^3$ bedeutet, dass zum Exponenten $3=11_2$ addiert werden muss. Das Vorzeichen und die Mantisse bleiben unverändert.

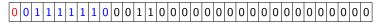
00010110 alter Exponent + 00000011 = 00011001 neuer Exponent



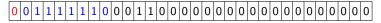
Multiplikation mit $8=2^3$ bedeutet, dass zum Exponenten $3=11_2$ addiert werden muss. Das Vorzeichen und die Mantisse bleiben unverändert.

```
00010110 alter Exponent
+ 00000011
= 00011001 neuer Exponent
```

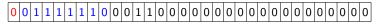
Dividiere die IEEE 754-Binärzahl durch -2, ohne ins Dezimalsystem umzurechnen.



Division durch $-2=-2^1$ bedeutet, dass vom Exponenten $1=1_2$ subtrahiert *und* das Vorzeichen geändert werden muss. Die Mantisse bleibt unverändert.



Division durch $-2=-2^1$ bedeutet, dass vom Exponenten $1=1_2$ subtrahiert *und* das Vorzeichen geändert werden muss. Die Mantisse bleibt unverändert.



Division durch $-2=-2^1$ bedeutet, dass vom Exponenten $1=1_2$ subtrahiert *und* das Vorzeichen geändert werden muss. Die Mantisse bleibt unverändert.

- 00000001 -1
- = 01111101 neuer Exponent

Sortiere die Gleitkommazahlen im IEEE 754-Format nach aufsteigender Grösse, ohne sie ins Dezimalsystem umzurechnen.

a < 0 und c < 0 sind beide kleiner als b > 0 und d > 0.

Da der Exponent von c < 0 grösser als der von a < 0 ist, muss c < a gelten. Die normalisierte Mantisse hat darauf keinen Einfluss.

$$c = -1.010_2 \cdot 2^{00110000_2 + 127}$$

$$a = -1.001_2 \cdot 2^{00100000_2 + 127}$$

Bei b > 0 und d > 0 sind die Exponenten gleich, weshalb b mit der grösseren Mantisse auch grösser als d ist.

$$d = 1.0001_2 \cdot 2^{00111000_2 + 127}$$

$$b = 1.0100_2 \cdot 2^{00111000_2 + 127}$$

Insgesamt:
$$c < a < d < b$$