IEEE 754

Multiplikation mit Zweierpotenzen

Die Idee

Da IEEE 754-Gleitkommazahlen in der Form $s \cdot m \cdot 2^e$ mit

- ▶ s: Vorzeichen
- ▶ m: Mantisse (Ziffernfolge der Zahl)
- e: Exponent (zur Basis 2)

gespeichert werden, sind Multiplikatonen von und Divisionen durch Zweierpotenzen effizient durchführbar, da die Multiplikation von Potenzen mit gleicher Basis eine *Addition* der Exponenten bedeutet. Die Mantisse bleibt dabei gleich und das Vorzeichen ändert sich jeweils dann, wenn der Faktor bzw. der Divisior negativ ist.

Beispiele:

- $1.23 \cdot 2^6 \cdot 8 = 1.23 \cdot 2^6 \cdot 2^3 = 1.23 \cdot 2^{6+3} = 1.23 \cdot 2^9$
- ▶ $1.23 \cdot 2^6 : (-32) = -1.23 \cdot 2^6 : 2^5 = -1.23 \cdot 2^{6-5} = -1.23 \cdot 2^1$

Beispiel 2

Multipliziere die IEEE 754-Zahl mit 4, ohne ins Dezimalsystem umzurechnen.

1 11000000 101100000000000000000000

Lösung: Da $4=2^2$, muss zum Exponenten 2 addiert werden $(s \cdot m \cdot 2^e \cdot 2^2 = s \cdot m \cdot 2^{e+2})$. Da die niederwertigen Stellen (rechts) "unbesetzt" sind, kann man einfach an der zweitletzten Stelle eine zusätzliche 1 einfügen, was den Exponenten um 2 grösser macht.

Beispiel 3

Multipliziere die IEEE 754-Zahl mit (-128), ohne ins Dezimalsystem umzurechnen.

0 11000100 101100000000000000000000

Lösung: Wegen $128 = -2^7$, muss das Vorzeichen gewechselt und der Exponent um 7 vergrössert werden.

Da hier bereits eine 1 an der drittletzter Stelle im Exponenten steht, müssen wir diesen durch eine binäre Addition vergrössern, wobei es genügt nur mit den betroffenen Stellen zu rechnen und einen potenziellen Übertrag zu berücksichtigen.

$$\begin{array}{ccccc}
 & \dots & 0100 & (e) \\
+ & & 111 & (7) \\
\hline
= & \dots & 1011 & (e+7)
\end{array}$$

Beispiel 4

Dividiere die IEEE 754-Zahl durch 64, ohne ins Dezimalsystem umzurechnen.

Lösung: Wegen $64 = 2^6$, muss der Exponent e um 6 verkleinert werden.

Da an den Positionen des Exponenten, die für die Darstellung der Zahl $6=4+2=2^2+2^1$ nötig sind, bereits Einsen stehen, können wir diese durch Subtraktion entfernen, ohne uns von zusätzlichen Stellen eine 1 zu "borgen".

$$\begin{array}{rcl}
 & 10011111 & (e) \\
- & 1010 & (6) \\
\hline
= & 10010101 & (e-6)
\end{array}$$

Multipliziere die IEEE 754-Zahl mit 128 ohne ins Dezimalsystem umzurechnen.

1 10000000 010100000000000000000000

Multipliziere die IEEE 754-Zahl mit 128 ohne ins Dezimalsystem umzurechnen.

- 1 10000000 010100000000000000000000
- 1 10000111 010100000000000000000000

Beachte: $128 = 2^7$, $7 = 00000111_2$

Dividiere die IEEE 754-Zahl durch -1024 ohne ins Dezimalsystem umzurechnen.

Dividiere die IEEE 754-Zahl durch -1024 ohne ins Dezimalsystem umzurechnen.

- 0 00111111 010100000000000000000000

Beachte: $1024 = 2^{10}$, $10 = 00001010_2$ und den Vorzeichenwechsel

Multipliziere die IEEE 754-Zahl mit -2 ohne ins Dezimalsystem umzurechnen.

0 10000000 001100000000000000000000

Multipliziere die IEEE 754-Zahl mit -2 ohne ins Dezimalsystem umzurechnen.

- 0 10000000 001100000000000000000000
- 1 10000001 001100000000000000000000

Beachte: $2 = 2^1$, $1 = 00000001_2$ und den Vorzeichenwechsel

Dividiere die IEEE 754-Zahl durch -8 ohne ins Dezimalsystem umzurechnen.

1 00111111 001100000000000000000000

Dividiere die IEEE 754-Zahl durch -8 ohne ins Dezimalsystem umzurechnen.

- 1 00111111 001100000000000000000000
- 0 00111100 00110000000000000000000

Beachte: $8=2^3$, $3=00000011_2$ und den Vorzeichenwechsel

Multipliziere die IEEE 754-Zahl mit -32 ohne ins Dezimalsystem umzurechnen.

1 10000000 101000000000000000000000

Multipliziere die IEEE 754-Zahl mit -32 ohne ins Dezimalsystem umzurechnen.

- 1 10000000 101000000000000000000000
- 0 10000101 101000000000000000000000

Beachte: $32 = 2^5$, $5 = 00000101_2$ und den Vorzeichenwechsel

Dividiere die IEEE 754-Zahl durch -16 ohne ins Dezimalsystem umzurechnen.

Dividiere die IEEE 754-Zahl durch -16 ohne ins Dezimalsystem umzurechnen.

- 0 00011111 101000000000000000000000

Beachte: $16 = 2^4$, $4 = 00000100_2$ und den Vorzeichenwechsel

Multipliziere die IEEE 754-Zahl mit 64 ohne ins Dezimalsystem umzurechnen.

1 10000000 001100000000000000000000

Multipliziere die IEEE 754-Zahl mit 64 ohne ins Dezimalsystem umzurechnen.

- 1 10000000 001100000000000000000000
- 1 10000110 001100000000000000000000

Beachte: $64 = 2^6$, $6 = 00000110_2$

Dividiere die IEEE 754-Zahl durch 4 ohne ins Dezimalsystem umzurechnen.

Dividiere die IEEE 754-Zahl durch 4 ohne ins Dezimalsystem umzurechnen.

- 0 00011111 110000000000000000000000
- 0 00011101 110000000000000000000000

Beachte:
$$4 = 2^2$$
, $2 = 00000010_2$

Multipliziere die IEEE 754-Zahl mit 512 ohne ins Dezimalsystem umzurechnen.

0 11000000 001100000000000000000000

Multipliziere die IEEE 754-Zahl mit 512 ohne ins Dezimalsystem umzurechnen.

- 0 11000000 00110000000000000000000
- 0 11001001 00110000000000000000000

Beachte: $512 = 2^9$, $9 = 00001001_2$

Dividiere die IEEE 754-Zahl durch -256 ohne ins Dezimalsystem umzurechnen.

0 00111111 001100000000000000000000

Dividiere die IEEE 754-Zahl durch -256 ohne ins Dezimalsystem umzurechnen.

0 00111111 001100000000000000000000

1 00110111 001100000000000000000000

Beachte: $256 = 2^8$, $8 = 00001000_2$ und den Vorzeichenwechsel