- 1. Du kannst die formalen Komponenten eines deterministischen endlichen Automaten (DFA) aufzählen.
 - Alphabet Σ
 - \bullet Zustandsmenge Q
 - Anfangszustand $q_0 \in Q$
 - Menge $F \subset Q$ der akzeptierenden Zustände
 - Übergangsfunktion $\delta \colon Q \times \Sigma \to Q$
- 2. Du kannst einen DFA in der graphischen Form darstellen und verwendest dabei die passenden Elemente:
 - einfache Kreise für nicht akzeptierende Zustände
 - Kreise mit Doppellinie für akzeptierende Zustände
 - Pfeile für Zustandsänderungen (Übergänge)
 - $\bullet\,$ ein "isolierter" Pfeil zur Kennzeichnung des Anfangszustands q_0
- 3. Sind ein Wort $w \in \Sigma$ und ein DFA \mathcal{A} gegeben, kannst du überprüfen, ob \mathcal{A} das Wort w akzeptiert; d. h. ob w zur Sprache gehört, die von \mathcal{A} erkannt wird.
- 4. Du kannst umgekehrt den DFA zu informell beschriebenen einfachen Sprachen konstruieren. Beispiele:
 - Die Sprache aller Wörter über $\Sigma = \{a, b\}$, die den Teilstring aba enthalten.
 - Die Sprache aller Wörter über $\Sigma = \{0, 1\}$, die mindestens drei Einsen enthalten.