Das Horner-Schema Übungen

Alle Nullstellen des Polynoms $f(x) = x^5 - x^4 - 2x^3 + 2x^2 + x - 1$ sind ganzzahlig. Bestimme sie und ihre Multiplizitäten mit Hilfe des Horner-Schemas.

Beachte: Falls sich $a_5x^5+a_4x^4+\ldots+a_1x+a_0$ vollständig in ein Produkt von Linearfaktoren

$$a_5(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)$$

zerlegen lässt, gilt $a_0 = a_5(-x_1)(-x_2)(-x_3)(-x_4)(-x_5) = -a_5x_1x_2x_3x_4x_5$.

Daher muss für $a_0 = -1$ die Anzahl der negativen Nullstellen gerade sein.

Beachte: Falls sich $a_5x^5+a_4x^4+\ldots+a_1x+a_0$ vollständig in ein Produkt von Linearfaktoren

$$a_5(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)$$

zerlegen lässt, gilt
$$a_0 = a_5(-x_1)(-x_2)(-x_3)(-x_4)(-x_5) = -a_5x_1x_2x_3x_4x_5$$
.

Daher muss für $a_0 = -1$ die Anzahl der negativen Nullstellen gerade sein.

Χ	<i>a</i> ₅	-1	-2	2	1	-1	
1	1	0	-2	0	1	0	$\rightarrow x_1 = 1$
1	1	1	-1	-1	0		$\rightarrow x_2 = 1$
1	1	2	1	0			$\rightarrow x_3 = 1$
1	1	3	4				
-1	1	1	0				$\rightarrow x_4 = -1$
-1	1	0					$\rightarrow x_5 = -1$

Beachte: Falls sich $a_5x^5+a_4x^4+\ldots+a_1x+a_0$ vollständig in ein Produkt von Linearfaktoren

$$a_5(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)$$

zerlegen lässt, gilt
$$a_0 = a_5(-x_1)(-x_2)(-x_3)(-x_4)(-x_5) = -a_5x_1x_2x_3x_4x_5$$
.

Daher muss für $a_0 = -1$ die Anzahl der negativen Nullstellen gerade sein.

X	<i>a</i> ₅	-1	-2	2	1	-1	
1	1	0	-2	0	1	0	$\rightarrow x_1 = 1$
1	1	1	-1	-1	0		$\rightarrow x_2 = 1$
1	1	2	1	0			$\rightarrow x_3 = 1$
1	1	3	4				
-1	1	1	0				$\rightarrow x_4 = -1$
$\overline{-1}$	1	0					$\rightarrow x_5 = -1$

$$x_1 = x_2 = x_3 = 1$$
 (dreifache Nullstelle)

$$x_4 = x_5 = -1$$
 (doppelte Nullstelle)

Mindestens eine Nullstelle des Polynoms $f(x) = x^4 - 15x^2 + 10x + 24$ ist eine Primzahl. Bestimme sie mit dem Horner-Schema und finde die übrigen Nullstellen mit dem Taschenrechner.

X	a ₄	0	-15	10	24		
2	1	2	-11	-12	0	\Rightarrow	$x_1 = 2$

$$g(x) = 1x^3 + 2x^2 - 11x - 12 = 0$$

$$g(x) = 1x^3 + 2x^2 - 11x - 12 = 0$$

TR
$$\Rightarrow$$
 $x_2 = 3$, $x_3 = -1$, $x_4 = -4$

oder:

$$g(x) = 1x^3 + 2x^2 - 11x - 12 = 0$$

TR
$$\Rightarrow$$
 $x_2 = 3$, $x_3 = -1$, $x_4 = -4$

oder:

$$h(x) = 1x^3 + 3x^2 - 6x - 8 = 0$$

$$g(x) = 1x^3 + 2x^2 - 11x - 12 = 0$$

TR
$$\Rightarrow$$
 $x_2 = 3$, $x_3 = -1$, $x_4 = -4$

oder:

$$h(x) = 1x^3 + 3x^2 - 6x - 8 = 0$$

TR
$$\Rightarrow$$
 $x_2 = 2$, $x_3 = -1$, $x_4 = -4$

Faktorisiere das Polynom $f(x) = x^4 - x^3 - 5x^2 - x - 6$ so weit wie möglich in \mathbb{C} , wenn bekannt ist, dass alle reellen Nullstellen ganzzahlig sind.

$$f(x) = x^4 - x^3 - 5x^2 - x - 6$$

)	(<i>a</i> ₄	-1	-5	-1	-6		
	1	1	0	-5	-6	-12		
_	-1	1	-2	-3	2	-8		
	2	1	1	-3	-7	-20		
_	-2	1	$ \begin{array}{c} 0 \\ -2 \\ 1 \\ -3 \end{array} $	1	-3	0	\Rightarrow	$x_1 = -2$
			0				\Rightarrow	$x_2 = 3$

$$f(x) = x^4 - x^3 - 5x^2 - x - 6$$

Somit sind alle ganzzahligen Nullstellen getestet und es gilt:

$$f(x) = x^4 - x^3 - 5x^2 - x - 6$$

Somit sind alle ganzzahligen Nullstellen getestet und es gilt:

$$x^{4} - x^{3} - 5x^{2} - x - 6 = (x+2)(x-3)(x^{2}+1)$$
$$= (x+2)(x-3)(x+i)(x-i)$$

Berechne das Resultat der Polynomdivision

$$(x^5 - 7x^4 - 9x^3 + 67x^2 - 16x - 84) : (x - 7)$$

mit dem Horner-Schema.

$$(x^5 - 7x^4 - 9x^3 + 67x^2 - 16x - 84) : (x - 7) = ?$$

Setzt man x=7 ins Horner-Schema für den Dividenden ein, so erhält man den Quotienten des Resultats. In der letzten Spalte steht ein allfälliger Divisionsrest.

Daraus folgt:

$$(x^5 - 7x^4 - 9x^3 + 67x^2 - 16x - 84) : (x - 7) = x^4 - 9x^2 + 4x + 12$$

Wie viele Multiplikationen und Additionen sind beim Auswerten des Polynoms

$$f(x) = a_9x^9 + a_8x^8 + \ldots + a_2x^2 + a_1x + a_0$$

an der Stelle $x = x_0$ höchstens nötig?

- (a) mit der "naiven" Berechnungsmethode
- (b) mit dem Horner-Schema

$$f(x) = a_9x^9 + a_8x^8 + \ldots + a_2x^2 + a_1x + a_0$$

(a) Naiv:

Anzahl Multiplikationen: $9+8+\ldots+1=(9+1)\cdot\frac{9}{2}=45$ Anzahl Additionen: 9

$$f(x) = a_9x^9 + a_8x^8 + \ldots + a_2x^2 + a_1x + a_0$$

(a) Naiv:

Anzahl Multiplikationen: $9 + 8 + ... + 1 = (9 + 1) \cdot \frac{9}{2} = 45$ Anzahl Additionen: 9

(b) Horner:

Anzahl Multiplikationen: 9 Anzahl Additionen: 9

Gegeben ist das Polynom

$$f(x) = x^5 - 2112x^4 + 2112x^3 - 2112x^2 + 2112x - 2100$$

Berechne den Wert f(x) für x = 2111

- (a) mit dem Taschenrechner TI-30X Pro,
- (b) mit dem Horner-Schema.
- (c) Warum sind die Ergebnisse in (a) und (b) verschieden?

(a) $2110 \xrightarrow{\text{STO}} x$ $x^5 - 2112x^4 + 2112x^3 - 2112x^2 + 2112x - 2100$ enter

Resultat: 5050

(a)
$$2110 \xrightarrow{\text{STO}} x$$

 $x^5 - 2112x^4 + 2112x^3 - 2112x^2 + 2112x - 2100$ enter
Resultat: 5050

(b) | -2112 2112 -2112 2112 -2100 2111 1 -1 1 -1 1 11

(a)
$$2110 \xrightarrow{\text{STO}} x$$

 $x^5 - 2112x^4 + 2112x^3 - 2112x^2 + 2112x - 2100$ enter
Resultat: 5050

(c) Die Potenzen werden so gross, dass der Taschenrechner die Mantisse nicht mehr genau darstellen kann und runden muss. Z.B. beim Monom mit dem grössten Exponenten:

	2111^5
exakt	41921920160991551
TI-30X Pro	$4.192192016 \cdot 10^{16}$

Auch wenn der TI-30X Pro die Mantisse intern mit 1–2 Stellen mehr speichert, fehlen der Potenz immer noch 5 Stellen, was die Differenz der Resultate erklärt.