Berechne $f(x) = 2x^3 - 3x^2 - 11x + 6$ für x = 5.

Berechne $f(x) = 2x^3 - 3x^2 - 11x + 6$ für x = 5.

Berechne $f(x) = 2x^3 - 3x^2 - 11x + 6$ für x = 5.

$$f(5) =$$

Berechne
$$f(x) = 2x^3 - 3x^2 - 11x + 6$$
 für $x = 5$.

$$f(5) = 2 \cdot 5^3 - 3 \cdot 5^2 - 11 \cdot 5 + 6 =$$

Berechne
$$f(x) = 2x^3 - 3x^2 - 11x + 6$$
 für $x = 5$.

$$f(5) = 2 \cdot 5^3 - 3 \cdot 5^2 - 11 \cdot 5 + 6 = 250 - 75 - 55 + 6 =$$

Berechne $f(x) = 2x^3 - 3x^2 - 11x + 6$ für x = 5.

$$f(5) = 2 \cdot 5^3 - 3 \cdot 5^2 - 11 \cdot 5 + 6 = 250 - 75 - 55 + 6 = 126$$

Berechne $f(x) = 2x^3 - 3x^2 - 11x + 6$ für x = 5.

Bisher:

$$f(5) = 2 \cdot 5^3 - 3 \cdot 5^2 - 11 \cdot 5 + 6 = 250 - 75 - 55 + 6 = 126$$

Anzahl Multiplikationen:

Berechne $f(x) = 2x^3 - 3x^2 - 11x + 6$ für x = 5.

Bisher:

$$f(5) = 2 \cdot 5^3 - 3 \cdot 5^2 - 11 \cdot 5 + 6 = 250 - 75 - 55 + 6 = 126$$

Anzahl Multiplikationen: 3 + 2 + 1 = 6

Berechne $f(x) = 2x^3 - 3x^2 - 11x + 6$ für x = 5.

Bisher:

$$f(5) = 2 \cdot 5^3 - 3 \cdot 5^2 - 11 \cdot 5 + 6 = 250 - 75 - 55 + 6 = 126$$

Anzahl Multiplikationen: 3 + 2 + 1 = 6

Anzahl Additionen/Subtraktionen:

Berechne $f(x) = 2x^3 - 3x^2 - 11x + 6$ für x = 5.

Bisher:

$$f(5) = 2 \cdot 5^3 - 3 \cdot 5^2 - 11 \cdot 5 + 6 = 250 - 75 - 55 + 6 = 126$$

Anzahl Multiplikationen: 3 + 2 + 1 = 6

Anzahl Additionen/Subtraktionen: 3

$$2x^3 - 3x^2 - 11x + 6 =$$

$$2x^3 - 3x^2 - 11x + 6 = x(2x^2 - 3x - 11) + 6$$
=

$$2x^3 - 3x^2 - 11x + 6 = x(2x^2 - 3x - 11) + 6$$
$$= x(x(2x - 3) - 11) + 6$$

$$2x^{3} - 3x^{2} - 11x + 6 = x(2x^{2} - 3x - 11) + 6$$
$$= x(x(2x - 3) - 11) + 6$$
$$f(5) =$$

$$2x^{3} - 3x^{2} - 11x + 6 = x(2x^{2} - 3x - 11) + 6$$
$$= x(x(2x - 3) - 11) + 6$$
$$f(5) = 5 \cdot (5 \cdot (2 \cdot 5 - 3) - 11) + 6$$

$$2x^{3} - 3x^{2} - 11x + 6 = x(2x^{2} - 3x - 11) + 6$$
$$= x(x(2x - 3) - 11) + 6$$
$$f(5) = 5 \cdot (5 \cdot (2 \cdot 5 - 3) - 11) + 6$$
$$= 5 \cdot (5 \cdot 7 - 11) + 6$$

$$2x^{3} - 3x^{2} - 11x + 6 = x(2x^{2} - 3x - 11) + 6$$
$$= x(x(2x - 3) - 11) + 6$$
$$f(5) = 5 \cdot (5 \cdot (2 \cdot 5 - 3) - 11) + 6$$
$$= 5 \cdot (5 \cdot 7 - 11) + 6$$
$$= 5 \cdot 24 + 6$$
$$= 126$$

$$2x^{3} - 3x^{2} - 11x + 6 = x(2x^{2} - 3x - 11) + 6$$

$$= x(x(2x - 3) - 11) + 6$$

$$f(5) = 5 \cdot (5 \cdot (2 \cdot 5 - 3) - 11) + 6$$

$$= 5 \cdot (5 \cdot 7 - 11) + 6$$

$$= 5 \cdot 24 + 6$$

$$= 126$$

Anzahl Multiplikationen:

$$2x^{3} - 3x^{2} - 11x + 6 = x(2x^{2} - 3x - 11) + 6$$

$$= x(x(2x - 3) - 11) + 6$$

$$f(5) = 5 \cdot (5 \cdot (2 \cdot 5 - 3) - 11) + 6$$

$$= 5 \cdot (5 \cdot 7 - 11) + 6$$

$$= 5 \cdot 24 + 6$$

$$= 126$$

Anzahl Multiplikationen: 3

$$2x^{3} - 3x^{2} - 11x + 6 = x(2x^{2} - 3x - 11) + 6$$

$$= x(x(2x - 3) - 11) + 6$$

$$f(5) = 5 \cdot (5 \cdot (2 \cdot 5 - 3) - 11) + 6$$

$$= 5 \cdot (5 \cdot 7 - 11) + 6$$

$$= 5 \cdot 24 + 6$$

$$= 126$$

Anzahl Multiplikationen: 3

Anzahl Additionen/Subtraktionen:

$$2x^{3} - 3x^{2} - 11x + 6 = x(2x^{2} - 3x - 11) + 6$$

$$= x(x(2x - 3) - 11) + 6$$

$$f(5) = 5 \cdot (5 \cdot (2 \cdot 5 - 3) - 11) + 6$$

$$= 5 \cdot (5 \cdot 7 - 11) + 6$$

$$= 5 \cdot 24 + 6$$

$$= 126$$

Anzahl Multiplikationen: 3

Anzahl Additionen/Subtraktionen: 3

Х	an	-3	-11	6

X	a _n	_3	-11	6
5				

$x \mid a_n \mid -3 -11 6$	
5 2	

X	a _n	_3	-11	6
5	2	7		

X	a _n	_3	-11	6
5	2	7	24	

X	a _n	-3	-11	6
5	2	7	24	126

X	a _n	-3	-11	6
5	2	7	24	126
4				

X	an	-3	-11	6
5	2	7	24	126
4	2			

X	a _n	-3	-11	6
5	2	7	24	126
4	2	5		

X	a _n	-3	-11	6
5	2	7	24	126
4	2	5	9	

X	a _n	_3	-11	6
5	2	7	24	126
4	2	5	9	42

X	a _n	_3	-11	6
5	2	7	24	126
4	2	5	9	42
3				

X	a _n	_3	-11	6
5	2	7	24	126
4	2	5	9	42
3	2			

X	a _n	_3	-11	6
5	2	7	24	126
4	2	5	9	42
3	2	3		

Das Horner-Schema

X	a _n	-3	-11	6
5	2	7	24	126
4	2	5	9	42
3	2	3	-2	

Das Horner-Schema

X	a _n	-3	-11	6
5	2	7	24	126
4	2	5	9	42
3	2	3	-2	0

Das Horner-Schema

6	-11	-3	a _n	X
126	24	7	2	5
42	9	5	2	4
0	-2	3	2	3

x = 3 ist Nullstelle des Polynoms.

Polynomdivision durch (x - 3) ergibt:

Offenbar sind die Koeffizienten des Quotientenpolynoms 2, 3, -2 mit der Zeile im Horner-Schema für x=3 identisch. Damit haben wir zwei Aufgaben gleichzeitig gelöst:

Findet man mit Hilfe des Horner-Schemas eine Nullstelle x_0 des Polynoms f(x), so stehen in der betreffenden Zeile die Koeffizienten des Quotientenpolynoms f(x): $(x - x_0)$.

Hinweis

Falls sich ein Polynom z. B. 3. Grades vollständig in Linearfaktoren zerlegen lässt, so hat es die Form

$$a_3x^3 + a_2x^2 + a_1x + a_0 = a_3(x - x_1)(x - x_2)(x - x_3)$$

= $a_3x^3 + \dots + \underbrace{a_3(-x_1)(-x_2)(-x_3)}_{a_0}$

Wenn dieses Polynom ganzzahlige Nullstellen und ganzzahlige Koeffizienten hat, so muss jede Nullstelle (bis auf ein Vorzeichen) Teiler von a_0/a_3 sein.

$$f(x) = x^3 - 9x^2 + 24x - 20$$

$$x - 9 \quad 24 \quad -20$$

$$f(x) = x^3 - 9x^2 + 24x - 20$$

 $x = -9$ 24 -20 (nur Teiler von -20 testen)

$$f(x) = x^3 - 9x^2 + 24x - 20$$
 $x - 9 - 24 - 20$ (nur Teiler von -20 testen)

Beispiel 2
$$f(x) = x^{3} - 9x^{2} + 24x - 20$$

$$\begin{array}{c|cccc} x & -9 & 24 & -20 \\ \hline 1 & 1 & -8 & 16 \end{array}$$
 (nur Teiler von -20 testen)

Beispiel 2
$$f(x) = x^{3} - 9x^{2} + 24x - 20$$

$$\begin{array}{c|ccccc}
x & -9 & 24 & -20 \\
\hline
1 & 1 & -8 & 16 & -4
\end{array}$$
 (nur Teiler von -20 testen)

$$f(x) = x^{3} - 9x^{2} + 24x - 20$$

$$\begin{array}{c|ccccc}
x & -9 & 24 & -20 \\
\hline
1 & 1 & -8 & 16 & -4 \\
-1 & 1 & -10
\end{array}$$
 (nur Teiler von -20 testen)

$$f(x) = x^{3} - 9x^{2} + 24x - 20$$

$$\begin{array}{c|ccccc}
x & -9 & 24 & -20 \\
\hline
1 & 1 & -8 & 16 & -4 \\
-1 & 1 & -10 & 34
\end{array}$$
 (nur Teiler von -20 testen)

Nullstellen:

Nullstellen: $x_1 = 2$,

Nullstellen: $x_1 = 2$, $x_2 = 2$,

Nullstellen: $x_1 = 2$, $x_2 = 2$, $x_3 = 5$

Nullstellen: $x_1 = 2$, $x_2 = 2$, $x_3 = 5$

Merke: Da $(x-x_0)$ mehr als einmal als Faktor im Polynom f vorkommen kann, muss eine Nullstelle x_0 so lange getestet werden, bis einen Rest $\neq 0$ entsteht. Diese *Vielfachheit* der Nullstelle wird auch *Multiplizität* von x_0 genannt.