Horner-Schema Prüfungsvorbereitung

Bestimme mit dem Horner-Schema (aber ohne Taschenrechner) den Funktionswert der Funktion

$$f(x) = 3x^4 - 29x^3 + 23x^2 - 44x + 71$$
 an der Stelle $x = 9$.

Auch wenn das Beispiel konstruiert ist, zeigt es schön, wie das Horner-Schema das Potenzieren und das Multiplizieren mit grossen Faktoren vereinfachen kann.

<i>x</i> ₀		-29	23	-44	71	
9	3	-2	5	1	80	

Also: f(9) = 80

Wie viele Multiplikationen sind beim Auswerten der Funktion

$$f(x) = 2x^5 + 3x^4 + 4x^3 + 5x^2 + 6x + 7$$

an der Stelle x = 8 nötig . . .

- (a) mit der direkten ("naiven") Berechnungsmethode.
- (b) mit dem Horner-Schema.

- (a) naiv: 5 + 4 + 3 + 2 + 1 = 15 Multiplikationen
- (b) Horner-Schema: 1+1+1+1+1=5 Multiplikationen

Bestimme mit dem Horner-Schema (aber ohne Taschenrechner) alle Nullstellen der Funktion $x^4-5x^3-7x^2+41x-30$ wenn bekannt ist, dass alle Nullstellen ganzzahlig sind.

Bestimmt man alle möglichen Faktoren des Koeffizienten, erhält man alle möglichen Kandidaten: ± 1 , ± 2 , ± 3 , ± 5 , ± 15 , ± 30

Sicherlich muss 2 oder -2 eine Lösung sein, denn ohne eine gerade Zahl, würde das Produkt der vier Lösungen nicht -30 ergeben. Darüber hinaus wissen wir auch, dass eine oder drei der Lösungen negativ sein müssen.

<i>x</i> ₀	<i>a</i> ₄	-5	-7	41	-30
2	1	-3	-13	15	0
3	1	0	-13	-24	=
-3	1	-6	5	0	
5	1	-1	0		
1	1	0			

$$x_1 = -3$$
, $x_2 = 1$, $x_3 = 2$, $x_4 = 5$

Bestimme das Resultat der Division $(2x^4 + 7x^3 - 5x + 12)$: (x + 3) mit dem Horner-Schema.

Also: $(2x^4 + 7x^3 - 5x + 12)$: $(x + 3) = 2x^3 + x^2 - 3x + 4$ (ohne Rest)

Bestimme das Resultat der Division

$$(x^5 + x^4 + x^3 + x^2 + x + 1) : (x - 1)$$
 mit dem Horner-Schema.

<i>x</i> ₀		1	1	1	1	1
1	1	2	3	4	5	6

Die Division wäre ohne Rest, wenn eine 0 anstelle der 6 herauskommen würde. Somit haben wir einen Rest von 6, der nicht durch (x-1) teilbar ist:

$$(x^5 + x^4 + x^3 + x^2 + x + 1) : (x - 1) = x^4 + 2x^3 + 3x^2 + 4x + 5 + \frac{6}{x - 1}$$

Dividiere das Polynom $x^6 - 6x^5 - 4x^4 + 58x^3 - 57x^2 - 52x + 60$ durch $(x + 3)(x - 2)^2$.

$$(x^6 - 6x^5 - 4x^4 + 58x^3 - 57x^2 - 52x + 60) : (x+3)(x-2)^2 = x^3 - 5x^2 - x + 5$$

Gegeben ist das Polynom

$$f(x) = x^5 - 2112x^4 + 2112x^3 - 2112x^2 + 2112x - 2100$$

Berechne den Wert f(x) für x = 2111

- (a) mit dem Taschenrechner TI-30X Pro,
- (b) mit dem Horner-Schema.
- (c) Warum sind die Ergebnisse in (a) und (b) verschieden?

(a) $2110 \xrightarrow{\text{STO}} x$ $x^5 - 2112x^4 + 2112x^3 - 2112x^2 + 2112x - 2100$ enter Resultat: 5050

(a)
$$2110 \xrightarrow{STO} X$$

 $x^5 - 2112x^4 + 2112x^3 - 2112x^2 + 2112x - 2100$ enter
Resultat: 5050

Resultat: 5050

(a)
$$2110 \xrightarrow{\text{STO}} x$$

 $x^5 - 2112x^4 + 2112x^3 - 2112x^2 + 2112x - 2100$ enter
Resultat: 5050

(b) | -2112 2112 -2112 2112 -2100 2111 1 -1 1 -1 1 11

(c) Die Potenzen werden so gross, dass der Taschenrechner die Mantisse nicht mehr genau darstellen kann und runden muss. Z.B. beim Monom mit dem grössten Exponenten:

	2111^5
exakt	41921920160991551
TI-30X Pro	$4.192192016 \cdot 10^{16}$

Auch wenn der TI-30X Pro die Mantisse intern mit 1–2 Stellen mehr speichert, fehlen der Potenz immer noch 5 Stellen, was die Differenz der Resultate erklärt.

Wie viele Multiplikationen und Additionen sind höchstens nötig, um eine Polynomfunktion vom Grad 100 an einer bestimmten Stelle x auszuwerten, wenn . . .

- (a) zuerst alle Monome ausmultipliziert und dann addiert werden,
- (b) das Horner-Schema verwendet wird.

$$f(x) = a_{100}x^{100} + a_{99}x^{99} + \ldots + a_1x + a_0$$

- Für die Berechnung von a₁₀₀x¹⁰⁰ sind 100 Multiplikationen nötig.
 - (99 Multiplikationen für x^{100} und 1 Multiplikation für $a_{100} \cdot x^{100}$).
 - Für die Berechnung von $a_{99}x^{99}$ sind 99 Multiplikationen nötig. (98 Multiplikationen für x^{99} und 1 Multiplikation für $a_{99} \cdot x^{99}$).
 - **.** . . .
 - Für die Berechnung von a_1x ist 1 Multiplikation nötig. (0 Multiplikationen für x^1 und 1 Multiplikation für $a_1 \cdot x$)
 - ► Für die Berechnung des Monoms *a*⁰ ist keine Multiplikation nötig.

$$f(x) = a_{100}x^{100} + a_{99}x^{99} + \ldots + a_1x + a_0$$

- (a) Für die Berechnung von $a_{100}x^{100}$ sind 100 Multiplikationen nötig.
 - (99 Multiplikationen für x^{100} und 1 Multiplikation für $a_{100} \cdot x^{100}$).
 - ► Für die Berechnung von $a_{99}x^{99}$ sind 99 Multiplikationen nötig. (98 Multiplikationen für x^{99} und 1 Multiplikation für $a_{99} \cdot x^{99}$).

 - Für die Berechnung von a_1x ist 1 Multiplikation nötig. (0 Multiplikationen für x^1 und 1 Multiplikation für $a_1 \cdot x$)
 - ► Für die Berechnung des Monoms *a*⁰ ist keine Multiplikation nötig.

Anzahl Multiplikationen:
$$0+1+2+\ldots+99+100=\frac{0+100}{2}\cdot 101$$

$$f(x) = a_{100}x^{100} + a_{99}x^{99} + \ldots + a_1x + a_0$$

- (a) Für die Berechnung von $a_{100}x^{100}$ sind 100 Multiplikationen nötig.
 - (99 Multiplikationen für x^{100} und 1 Multiplikation für $a_{100} \cdot x^{100}$).
 - Für die Berechnung von $a_{99}x^{99}$ sind 99 Multiplikationen nötig. (98 Multiplikationen für x^{99} und 1 Multiplikation für $a_{99} \cdot x^{99}$).
 - **.** . . .
 - Für die Berechnung von a_1x ist 1 Multiplikation nötig. (0 Multiplikationen für x^1 und 1 Multiplikation für $a_1 \cdot x$)
 - ► Für die Berechnung des Monoms a₀ ist keine Multiplikation nötig.

Anzahl Multiplikationen:
$$0+1+2+\ldots+99+100=\frac{0+100}{2}\cdot 101$$

oder:

Anzahl Multiplikationen =
$$1+2+\ldots+99+100=\frac{1+100}{2}\cdot 100=(1+100)\cdot \frac{100}{2}=$$

$$f(x) = a_{100}x^{100} + a_{99}x^{99} + \ldots + a_1x + a_0$$

- Für die Berechnung von a₁₀₀x¹⁰⁰ sind 100 Multiplikationen nötig.
 - (99 Multiplikationen für x^{100} und 1 Multiplikation für $a_{100} \cdot x^{100}$).
 - Für die Berechnung von $a_{99}x^{99}$ sind 99 Multiplikationen nötig. (98 Multiplikationen für x^{99} und 1 Multiplikation für $a_{99} \cdot x^{99}$).
 - **.**..
 - Für die Berechnung von a_1x ist 1 Multiplikation nötig. (0 Multiplikationen für x^1 und 1 Multiplikation für $a_1 \cdot x$)
 - ► Für die Berechnung des Monoms a₀ ist keine Multiplikation nötig.

Anzahl Multiplikationen:
$$0+1+2+\ldots+99+100=\frac{0+100}{2}\cdot 101$$

oder:

Anzahl Multiplikationen
$$= 1 + 2 + \ldots + 99 + 100 = \frac{1 + 100}{2} \cdot 100 = (1 + 100) \cdot \frac{100}{2} = (1 +$$

Anzahl Additionen: 100

$$f(x) = a_{100}x^{100} + a_{99}x^{99} + \ldots + a_1x + a_0$$

- (a) Für die Berechnung von $a_{100}x^{100}$ sind 100 Multiplikationen nötig.
 - (99 Multiplikationen für x^{100} und 1 Multiplikation für $a_{100} \cdot x^{100}$).
 - Für die Berechnung von $a_{99}x^{99}$ sind 99 Multiplikationen nötig. (98 Multiplikationen für x^{99} und 1 Multiplikation für $a_{99} \cdot x^{99}$).

 - Für die Berechnung von a_1x ist 1 Multiplikation nötig. (0 Multiplikationen für x^1 und 1 Multiplikation für $a_1 \cdot x$)
 - Für die Berechnung des Monoms a_0 ist keine Multiplikation nötig.

Anzahl Multiplikationen:
$$0+1+2+\ldots+99+100=\frac{0+100}{2}\cdot 101$$

oder:

Anzahl Multiplikationen
$$=1+2+\ldots+99+100=\frac{1+100}{2}\cdot 100=(1+100)\cdot \frac{100}{2}=$$

Anzahl Additionen: 100

(b) Horner Schema:

