# Eigenschaften von Folgen

# Folge

# Folge

Eine relle Folge  $(a_n)$  ist eine Abbildung, die jeder natürlichen Zahl n eine relle Zahl  $a_n$  zuordnet.

# Reihe

## Reihe

Ist  $(a_n)$  eine Folge, so ist die Reihe  $(s_n)$  die Folge der Teilsummen von  $(a_n)$ , also  $s_n = \sum_{i=1}^n a_i$ .

Eine Folge  $(a_n)$  ist monoton wachsend, wenn jeder Nachfolger  $a_{n+1}$  grösser oder gleich wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist monoton wachsend, wenn jeder Nachfolger  $a_{n+1}$  grösser oder gleich wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist monoton fallend, wenn jeder Nachfolger  $a_{n+1}$  kleiner oder gleich wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist monoton wachsend, wenn jeder Nachfolger  $a_{n+1}$  grösser oder gleich wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist monoton fallend, wenn jeder Nachfolger  $a_{n+1}$  kleiner oder gleich wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist streng monoton wachsend, wenn jeder Nachfolger  $a_{n+1}$  grösser wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist monoton wachsend, wenn jeder Nachfolger  $a_{n+1}$  grösser oder gleich wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist monoton fallend, wenn jeder Nachfolger  $a_{n+1}$  kleiner oder gleich wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist streng monoton wachsend, wenn jeder Nachfolger  $a_{n+1}$  grösser wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist streng monoton fallend, wenn jeder Nachfolger  $a_{n+1}$  kleiner wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist monoton wachsend, wenn jeder Nachfolger  $a_{n+1}$  grösser oder gleich wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist monoton fallend, wenn jeder Nachfolger  $a_{n+1}$  kleiner oder gleich wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist streng monoton wachsend, wenn jeder Nachfolger  $a_{n+1}$  grösser wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist streng monoton fallend, wenn jeder Nachfolger  $a_{n+1}$  kleiner wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist monoton, wenn sie entweder monoton wachsend oder monoton fallend ist.

Eine Folge  $(a_n)$  ist monoton wachsend, wenn jeder Nachfolger  $a_{n+1}$  grösser oder gleich wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist monoton fallend, wenn jeder Nachfolger  $a_{n+1}$  kleiner oder gleich wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist streng monoton wachsend, wenn jeder Nachfolger  $a_{n+1}$  grösser wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist streng monoton fallend, wenn jeder Nachfolger  $a_{n+1}$  kleiner wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist monoton, wenn sie entweder monoton wachsend oder monoton fallend ist.

Eine Folge  $(a_n)$  ist streng monoton, wenn sie entweder streng monoton wachsend oder streng monoton fallend ist.

Eine Folge  $(a_n)$  ist monoton wachsend, wenn jeder Nachfolger  $a_{n+1}$  grösser oder gleich wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist monoton fallend, wenn jeder Nachfolger  $a_{n+1}$  kleiner oder gleich wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist streng monoton wachsend, wenn jeder Nachfolger  $a_{n+1}$  grösser wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist streng monoton fallend, wenn jeder Nachfolger  $a_{n+1}$  kleiner wie sein Vorgänger  $a_n$  ist.

Eine Folge  $(a_n)$  ist monoton, wenn sie entweder monoton wachsend oder monoton fallend ist.

Eine Folge  $(a_n)$  ist streng monoton, wenn sie entweder streng monoton wachsend oder streng monoton fallend ist.

Eine Folge  $(a_n)$  ist nicht monoton, wenn sie weder monoton noch streng monoton ist.

Eine Folge  $(a_n)$  ist nach oben beschränkt, wenn sie eine obere Schranke S besitzt d. h. wenn  $a_n \leq S$  für alle  $n \in \mathbb{N}$  gilt.

Eine Folge  $(a_n)$  ist nach oben beschränkt, wenn sie eine obere Schranke S besitzt d. h. wenn  $a_n \leq S$  für alle  $n \in \mathbb{N}$  gilt.

Eine Folge  $(a_n)$  ist nach unten beschränkt, wenn sie eine untere Schranke S besitzt d. h. wenn  $a_n \geq S$  für alle  $n \in \mathbb{N}$  gilt.

Eine Folge  $(a_n)$  ist nach oben beschränkt, wenn sie eine obere Schranke S besitzt d. h. wenn  $a_n \leq S$  für alle  $n \in \mathbb{N}$  gilt.

Eine Folge  $(a_n)$  ist nach unten beschränkt, wenn sie eine untere Schranke S besitzt d. h. wenn  $a_n \geq S$  für alle  $n \in \mathbb{N}$  gilt.

Eine Folge  $(a_n)$  ist beschränkt, wenn sie sowohl nach oben als auch nach unten beschränkt ist.

Eine Folge  $(a_n)$  ist nach oben beschränkt, wenn sie eine obere Schranke S besitzt d. h. wenn  $a_n \leq S$  für alle  $n \in \mathbb{N}$  gilt.

Eine Folge  $(a_n)$  ist nach unten beschränkt, wenn sie eine untere Schranke S besitzt d. h. wenn  $a_n \geq S$  für alle  $n \in \mathbb{N}$  gilt.

Eine Folge  $(a_n)$  ist beschränkt, wenn sie sowohl nach oben als auch nach unten beschränkt ist.

Eine Folge  $(a_n)$  ist unbeschränkt (oder nicht beschränkt), wenn sie weder nach oben noch nach unten beschränkt ist.

# Alternierende Folgen

# Alternierende Folgen

Eine Folge  $(a_n)$  heisst alternierend, wenn ihre Werte abwechselnd positiv und negativ oder abwechselnd negativ und positiv sind.

# Alternierende Folgen

Eine Folge  $(a_n)$  heisst alternierend, wenn ihre Werte abwechselnd positiv und negativ oder abwechselnd negativ und positiv sind.

Bemerkung: Die Zahl Null ist weder positiv noch negativ.

# Häufungspunkte

# Häufungspunkte

Eine Zahl p heisst Häufungspunkt der Folge  $(a_n)$ , wenn in jeder noch so kleinen Umgebung U von p unendlich viele Folgeglieder liegen.

# Häufungspunkte

Eine Zahl p heisst Häufungspunkt der Folge  $(a_n)$ , wenn in jeder noch so kleinen Umgebung U von p unendlich viele Folgeglieder liegen.

Bemerkung: Eine Folge kann auch mehrere Häufungspunkte oder keinen Häufungspunkt haben.

Eine Zahl a heisst Grenzwert der Folge  $(a_n)$ , wenn in jeder noch so kleinen Umgebung U von a alle bis auf endlich viele Folgeglieder liegen.

Eine Zahl a heisst Grenzwert der Folge  $(a_n)$ , wenn in jeder noch so kleinen Umgebung U von a alle bis auf endlich viele Folgeglieder liegen.

### Bemerkungen:

Für den Grenzwert der Folge  $(a_n)$  schreibt man  $a = \lim_{n \to \infty} a_n$ .

Eine Zahl a heisst Grenzwert der Folge  $(a_n)$ , wenn in jeder noch so kleinen Umgebung U von a alle bis auf endlich viele Folgeglieder liegen.

- Für den Grenzwert der Folge  $(a_n)$  schreibt man  $a = \lim_{n \to \infty} a_n$ .
- Wenn eine Folge einen Grenzwert hat, so ist er eindeutig.

Eine Zahl a heisst Grenzwert der Folge  $(a_n)$ , wenn in jeder noch so kleinen Umgebung U von a alle bis auf endlich viele Folgeglieder liegen.

- Für den Grenzwert der Folge  $(a_n)$  schreibt man  $a = \lim_{n \to \infty} a_n$ .
- Wenn eine Folge einen Grenzwert hat, so ist er eindeutig.
- ► Wenn eine Folge einen Grenzwert hat, wird sie konvergent genannt; andernfalls ist sie divergent.

Eine Zahl a heisst Grenzwert der Folge  $(a_n)$ , wenn in jeder noch so kleinen Umgebung U von a alle bis auf endlich viele Folgeglieder liegen.

- Für den Grenzwert der Folge  $(a_n)$  schreibt man  $a = \lim_{n \to \infty} a_n$ .
- Wenn eine Folge einen Grenzwert hat, so ist er eindeutig.
- Wenn eine Folge einen Grenzwert hat, wird sie konvergent genannt; andernfalls ist sie divergent.
- ▶ Eine Folge  $(a_n)$  ist bestimmt divergent (oder uneigentlich konvergent) gegen  $\infty$ , wenn für jede Zahl M alle bis auf endlich viele Folgeglieder grösser als M sind.

Eine Zahl a heisst Grenzwert der Folge  $(a_n)$ , wenn in jeder noch so kleinen Umgebung U von a alle bis auf endlich viele Folgeglieder liegen.

- Für den Grenzwert der Folge  $(a_n)$  schreibt man  $a = \lim_{n \to \infty} a_n$ .
- Wenn eine Folge einen Grenzwert hat, so ist er eindeutig.
- Wenn eine Folge einen Grenzwert hat, wird sie konvergent genannt; andernfalls ist sie divergent.
- ▶ Eine Folge  $(a_n)$  ist bestimmt divergent (oder uneigentlich konvergent) gegen  $\infty$ , wenn für jede Zahl M alle bis auf endlich viele Folgeglieder grösser als M sind.
- ▶ Eine Folge  $(a_n)$  ist bestimmt divergent (oder uneigentlich konvergent) gegen  $-\infty$ , wenn für jede Zahl M alle bis auf endlich viele Folgeglieder kleiner als M sind.

