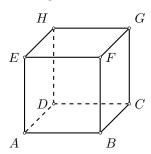
Vektorgeometrie (Kapitel 1–4)


Prüfungsvorbereitung (4a)

Aufgabe 1.1

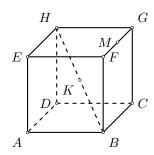
Löse die Gleichung $\frac{1}{3}(2\vec{a}-\vec{b}+\vec{c})=2\vec{b}-\frac{1}{2}(\vec{a}+2\vec{b}-3\vec{c})$ nach \vec{a} auf und vereinfache das Ergebnis so weit wie möglich.

Aufgabe 1.2

Die Figur stellt einen Würfel dar.

Gib mit Hilfe der Eckpunkte alle Pfeile an, die den folgenden Vektor repräsentieren:

- (a) \overrightarrow{BC}
- (b) \overrightarrow{DE}
- (c) \overrightarrow{AG}

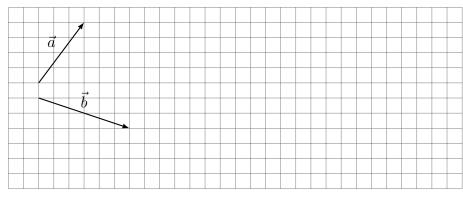

Aufgabe 1.3

Vereinfache den folgenden Ausdruck so weit wie möglich.

- (a) $\overrightarrow{AB} + \overrightarrow{BC}$
- (b) $\overrightarrow{XY} + \overrightarrow{YX}$
- (c) $\overrightarrow{CD} \overrightarrow{ED}$
- (d) $\overrightarrow{AB} + \overrightarrow{CA}$

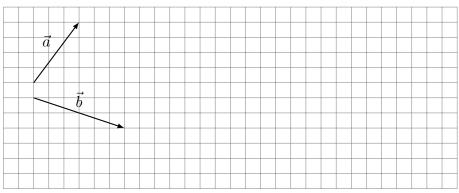
Aufgabe 1.4

Im Würfel ist K Mitte der Diagonale HB und M ist Mitte der Kante FG.

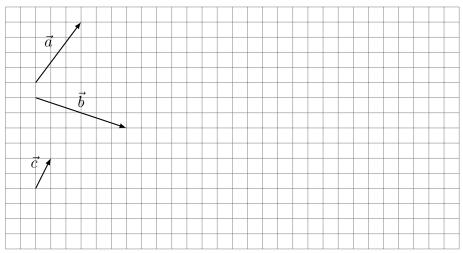


Drücke die folgenden Vektoren durch $\vec{a}=\overrightarrow{AB},\,\vec{b}=\overrightarrow{AD}$ und $\vec{c}=\overrightarrow{AE}$ aus.

- (a) \overrightarrow{AF}
- (b) \overrightarrow{AM}
- (c) \overrightarrow{CM}
- (d) \overrightarrow{AK}
- (e) \overrightarrow{MK}
- (f) \overrightarrow{CK}


Aufgabe 1.5

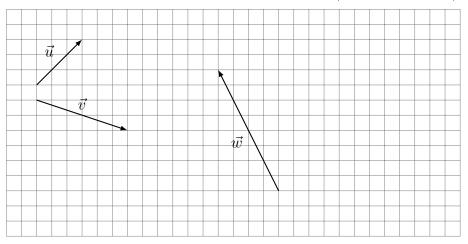
Konstruiere eine Repräsentanten des Vektors $\vec{s} = \vec{a} + \vec{b}$.


Aufgabe 1.6

Konstruiere einen Repräsentanten des Vektors $\vec{d} = \vec{a} - \vec{b}$.

Aufgabe 1.7

Konstruiere einen Repräsentanten des Vektors $\vec{x} = \vec{a} - \frac{1}{2}\vec{b} + 2\vec{c}$.

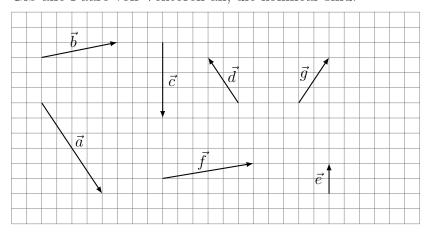

Aufgabe 1.8

Konstruiere einen Repräsentanten des Vektors \vec{y} , der die Gleichung $-\vec{a}+2\vec{b}+\vec{y}=\vec{0}$ erfüllt.

Aufgabe 1.9

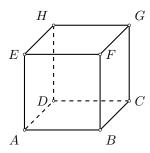
Zerlege den Repräsentanten von \vec{w} konstruktiv in eine Linearkombination der Vektoren \vec{u} und \vec{v} . Bestimme ferner die Koeffizienten α und β von $\vec{w} = \alpha \vec{u} + \beta \vec{v}$.

Aufgabe 2.1


Wann sind zwei Vektoren \vec{a} und \vec{b} linear unabhängig?

Aufgabe 2.2

Wann sind vier Vektoren \vec{a} , \vec{b} , \vec{c} und \vec{d} linear abhängig?


Aufgabe 2.3

Gib alle Paare von Vektoren an, die kollinear sind.

Aufgabe 2.4

Sind die folgenden Vektoren mit den Endpunkten auf den Ecken des Würfels ABCDEFGH linear abhängig oder linear unabhängig?

(a)
$$\overrightarrow{AD}$$
, \overrightarrow{GH}

(d)
$$\overrightarrow{AB}$$
, \overrightarrow{CG} , \overrightarrow{EH}

(b)
$$\overrightarrow{HF}$$
, \overrightarrow{BD}

(e)
$$\overrightarrow{AB}$$
, \overrightarrow{AD} , \overrightarrow{EG}

(c)
$$\overrightarrow{BG}$$
, \overrightarrow{CA}

(f)
$$\overrightarrow{EC}$$
, \overrightarrow{HB} , \overrightarrow{GF}

Aufgabe 3.1

Die Vektoren \vec{e}_1 , \vec{e}_2 und \vec{e}_3 bilden eine Basis des dreidimensionalen Raumes \mathbb{R}^3 . Gib die Komponentendarstellung der folgenden Vektoren an.

(a)
$$\vec{u} = 2\vec{e}_1 - 7\vec{e}_3$$

(b)
$$\vec{v} = 4\vec{e_2} + 5\vec{e_3} - 2\vec{e_1}$$

(c)
$$-\vec{v}$$

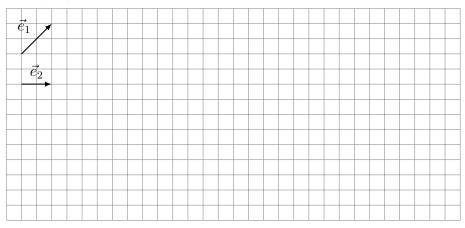
(d)
$$\vec{e}_2$$

(e)
$$\vec{0}$$

Aufgabe 3.2

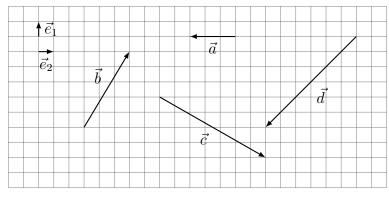
Gegeben: $\vec{a} = \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} -0.5 \\ -1 \\ 0 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} 0.1 \\ -0.6 \\ 1.4 \end{pmatrix}$ bezüglich einer Basis \vec{e}_1 , \vec{e}_2 und \vec{e}_3 .

5

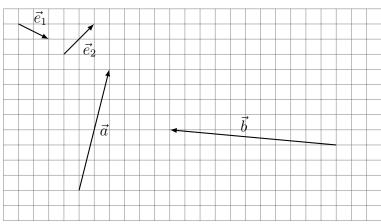

Gesucht: Komponentendarstellung der Linearkombinationen

(a)
$$\vec{a} + 2\vec{b}$$

(b)
$$-\vec{a} + 2\vec{b} - 10\vec{c}$$


Aufgabe 3.3

Zeichne je einen Repräsentanten der Vektoren $\vec{a} = \begin{pmatrix} 0 \\ -2.5 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \ \vec{c} = \begin{pmatrix} -4 \\ 0.5 \end{pmatrix}$ und $\vec{d} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ bezüglich der Basis $\vec{e_1}, \ \vec{e_2}.$


Aufgabe 3.4

Gib die Komponentendarstellungen der Vektoren $\vec{a},\,\vec{b},\,\vec{c},\,\vec{d}$ bezüglich der Basis $\vec{e}_1,\,\vec{e}_2$ an.

Aufgabe 3.5

Bestimme konstruktiv die Komponentendarstellung der Vektoren \vec{a} und \vec{b} bezüglich der Basis $\vec{e}_1,\,\vec{e}_2.$

Aufgabe 3.6

Gegeben sind
$$\vec{a} = \begin{pmatrix} 7 \\ -9 \\ -5 \end{pmatrix}$$
 und $\vec{b} = \begin{pmatrix} -2 \\ 3 \\ 4 \end{pmatrix}$.

Für welche Komponenten des Vektors \vec{c} bildet $\vec{a} + 2\vec{b} - 3\vec{c}$ eine geschlossene Vektorkette?

Aufgabe 3.7

Sind die Vektoren
$$\vec{a} = \begin{pmatrix} 42\\36\\-18\\45 \end{pmatrix}$$
 und $\vec{b} = \begin{pmatrix} 28\\24\\-12\\30 \end{pmatrix}$ kollinear? Begründe die Antwort.

Aufgabe 3.8

Untersuche, ob die Vektoren
$$\vec{a} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$ linear unabhängig sind.

Aufgabe 3.9

Ist es möglich, den Vektor
$$\vec{v} = \begin{pmatrix} 4 \\ -2 \\ 9 \end{pmatrix}$$
 als Linearkombination von $\vec{a} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$ darzustellen? Wenn ja, gib die (oder eine) Lösung an.

Aufgabe 3.10

Ist es möglich, den Vektor
$$\vec{v} = \begin{pmatrix} 9 \\ 1 \\ 7 \end{pmatrix}$$
 als Linearkombination von $\vec{a} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$ darzustellen? Wenn ja, gib die (oder eine) Lösung an.

Aufgabe 3.11

Ist es möglich, den Vektor $\vec{v} = \begin{pmatrix} 9 \\ 1 \\ 7 \end{pmatrix}$ als Linearkombination von

$$\vec{a} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \vec{b} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \text{ und } \vec{c} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$

darzustellen? Wenn ja, gib die (oder eine) Lösung an.

Aufgabe 3.12

Bestimme die Werte der Parameter x und z, so dass die Vektoren $\vec{a} = \begin{pmatrix} 16 \\ -24 \\ -12 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} x \\ 18 \\ z \end{pmatrix}$ kollinear sind.

Aufgabe 4.1

Bestimme den Punkt B, so dass A(2,-1,4), B, C(7,3,5) und D(4,1,6) in dieser Reihenfolge ein Parallelogramm bilden.

8

Aufgabe 4.2

Der Punkt M(-9, 8, 4) ist der Mittelpunkt der Strecke mit den Ecken A(1, 5, -4) und B. Bestimme die Koordinaten von B.

Aufgabe 4.3

Bestimme den Schwerpunkt S des Tetraeders mit den Ecken A(7, -3, 9), B(-5, 1, 2), C(0, 6, 3) und D(8, 4, 4).

Aufgabe 4.4

Untersuche mit den entsprechenden Rechnungen, ob die Punkte A(3,5,-8), B(1,6,-3) und C(9,2,-23) auf einer Geraden liegen.

Aufgabe 4.5

Gegeben: Punkte A(-7, 1, 3) und B(9, -3, 11)

Gesucht: Punkt P der die Strecke AB innen im Verhältnis 3:5 teilt.

Aufgabe 4.6

Berechne den Umfang des Dreiecks ABC mit A(3,1,4), B(14,17,12) und C(21,13,8).

Aufgabe 4.7

Bestimme alle Vektoren mit der Länge 1, die kollinear zu $\vec{v} = \begin{pmatrix} 16 \\ -12 \\ 15 \end{pmatrix}$ sind.

Aufgabe 4.8

Gegeben sind A(1, y, 5) und B(7, 6, 3). Bestimme die fehlende Koordinate von A, so dass die Strecke AB die Länge 11 hat.

Aufgabe 4.9

Welche Punkte auf der z-Achse sind von A(11, 8, -9) dreimal so weit entfernt wie von B(6, -3, 5)?

9

Aufgabe 4.10

Beschreibe möglichst genau die besondere Lage der Punkte.

- (a) P(0,3,0)
- (b) Q(-1,0,4)

Aufgabe 4.11

Spiegle den Punkt P(4, -7, 3) ...

- (a) an der xy-Ebene,
- (b) an der z-Achse,
- (c) am Ursprung,
- (d) am Punkt Z(-1, -6, 1).