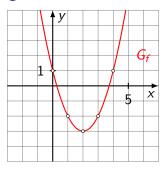

Transformation von Funktionen Prüfungsvorbereitung 2

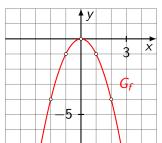
Gib eine Gleichung der Funktion mit dem abgebildeten Graphen an.

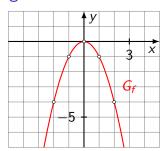

Normalparabel: $y = x^2$

Normalparabel: $y = x^2$

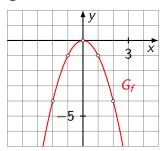
Verschieben: $x \rightarrow (x-2)$

$$y \rightarrow (y+3)$$


Normalparabel: $y = x^2$

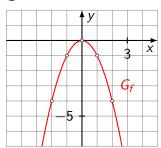

Verschieben: $x \rightarrow (x-2)$

$$y \rightarrow (y+3)$$


Gleichung:
$$y + 3 = (x - 2)^2$$

 $y = (x - 2)^2 - 3$
 $y = x^2 - 4x + 1$

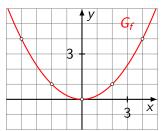
Gib eine Gleichung der Funktion mit dem abgebildeten Graphen an.

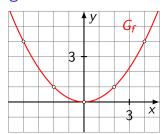


Normalparabel: $y = x^2$

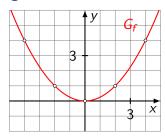
Normalparabel: $y = x^2$

Spiegeln an x-Achse: $y \rightarrow -y$

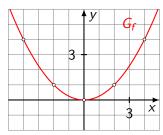

Normalparabel: $y = x^2$


Spiegeln an x-Achse: $y \rightarrow -y$

Gleichung:
$$-y = x^2$$


$$y = -x^2$$

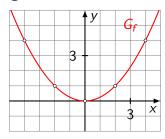
Gib eine Gleichung der Funktion mit dem Graphen G_f an.


Normalparabel: $y = x^2$

Normalparabel: $y = x^2$

Strecken mit 2 in x-Richtung:

$$x \to \frac{1}{2}x$$

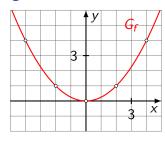


Normalparabel: $y = x^2$

Strecken mit 2 in x-Richtung:

$$x \to \frac{1}{2}x$$

Gleichung:
$$y = \left(\frac{1}{2}x\right)^2 = \frac{1}{4}x^2$$


Normalparabel: $y = x^2$

Strecken mit 2 in x-Richtung:

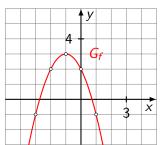
$$x \to \frac{1}{2}x$$

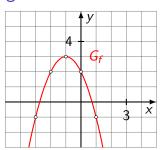
Gleichung:
$$y = \left(\frac{1}{2}x\right)^2 = \frac{1}{4}x^2$$

oder in *y*-Richtung mit Faktor $\frac{1}{4}$:

Normal parabel: $y = x^2$

Strecken mit 2 in x-Richtung:


$$x \to \frac{1}{2}x$$


Gleichung:
$$y = \left(\frac{1}{2}x\right)^2 = \frac{1}{4}x^2$$

oder in y-Richtung mit Faktor $\frac{1}{4}$:

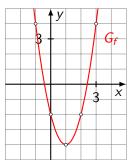

$$4y = x^2 \implies y = \frac{1}{4}x^2$$

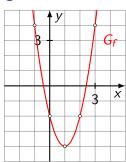
Gib eine Gleichung der Funktion mit dem Graphen G_f an.

Normalparabel: $y = x^2$

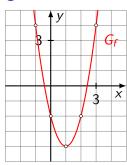
Normalparabel: $y = x^2$

Spiegeln an *y*-Achse: y = -x

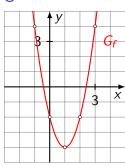

Normal parabel: $y = x^2$


Spiegeln an *y*-Achse: y = -x

Verschieben:


$$(y-3) = -(x+1)^{2}$$
$$y = -(x^{2} + 2x + 1) + 3$$
$$y = -x^{2} - 2x + 2$$

Gib eine Gleichung der Funktion mit dem Graphen G_f an.

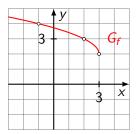

Normal parabel: $y = x^2$

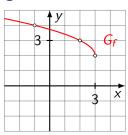
Normalparabel: $y = x^2$

Strecken mit 2 in *y*-Richtung:

$$\frac{1}{2}y = x^2$$

Normal parabel: $y = x^2$

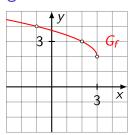

Strecken mit 2 in y-Richtung:


$$\frac{1}{2}y = x^2$$

Verschieben:

$$\frac{1}{2}(y+4) = (x-1)^2$$
$$y+4 = 2(x^2 - 2x + 1)$$
$$y = 2x^2 - 4x - 2$$

Gib eine Gleichung der Funktion mit dem Graphen G_f an.



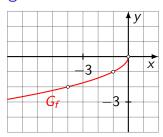
Quadratwurzelfunktion: $y = \sqrt{x}$

Quadratwurzelfunktion: $y = \sqrt{x}$

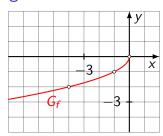
Spiegeln an *y*-Achse: $y = \sqrt{-x}$

Quadratwurzelfunktion: $y = \sqrt{x}$

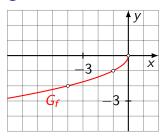
Spiegeln an *y*-Achse: $y = \sqrt{-x}$


Verschieben:

$$y-2=\sqrt{-(x-3)}$$


$$y = \sqrt{-x+3} + 2$$

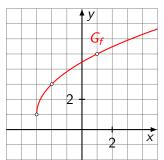
Gib eine Gleichung der Funktion mit dem Graphen G_f an.

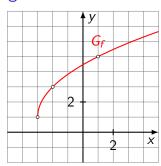


Quadratwurzelfunktion: $y = \sqrt{x}$

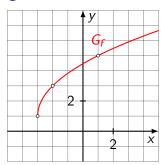
Quadratwurzelfunktion: $y = \sqrt{x}$

Spiegeln an *y*-Achse: $y = \sqrt{-x}$

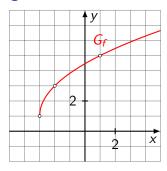

Quadratwurzelfunktion: $y = \sqrt{x}$


Spiegeln an *y*-Achse: $y = \sqrt{-x}$

Spiegeln an *x*-Achse: $-y = \sqrt{-x}$


$$y = -\sqrt{-x}$$

Gib eine Gleichung der Funktion mit dem Graphen G_f an.



Quadratwurzelfunktion: $y = \sqrt{x}$

Quadratwurzelfunktion: $y = \sqrt{x}$

Strecken mit 2 in y-Richt.: $\frac{1}{2}y = \sqrt{x}$

Quadratwurzelfunktion: $y = \sqrt{x}$

Strecken mit 2 in *y*-Richt.: $\frac{1}{2}y = \sqrt{x}$

Verschieben:

$$\frac{1}{2}(y-1) = \sqrt{x+3}$$
$$y-1 = 2\sqrt{x+3}$$
$$y = 2\sqrt{x+3} + 1$$