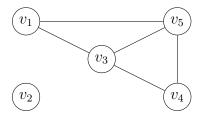


$$V = \{v_1, v_2, v_3, v_4\}$$

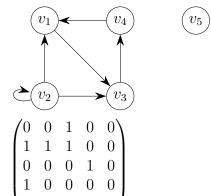
$$E = \{(v_2, v_3), (v_3, v_1), (v_3, v_2), (v_4, v_1), (v_4, v_2), (v_4, v_3)\}$$

Aufgabe 2

- (a) um einen ungerichteten Graphen
- (b) Graph:



Aufgabe 3

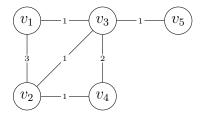


Zeilennummer: Index des Herkunftsknotens

Spaltennummer: Index des Zielknotens

Aufgabe 4

Alle Kanten zwischen zwei Ecken werden durch eine Kante mit dem Gewicht der ursprünglichen Anzahl Kanten ersetzt.



Graph:

- $V = \{a, b, c, d, e\}$ und
- $E = \{\{a,b\},\{a,d\},\{b,c\}\}$

Adjazentlisten: $a \rightarrow \{b, d\}$ $b \rightarrow \{a, c\}$ $c \rightarrow \{b\}$ $d \rightarrow \{a\}$ $e \rightarrow \{\}$

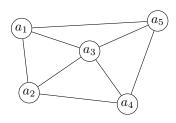
Beachte, dass in einem ungerichteten Graph die Nachbarschaftbeziehungen für Knoten symmetrisch sind: Wenn beispielsweise Knoten b ein Nachbar von Knoten a ist, dann ist auch Knoten b Nachbar von Knoten a. Dies gilt jedoch nicht in gerichteten Graphen.

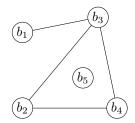
Aufgabe 6

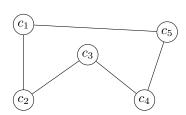
Ja, denn mit G = (V, E) gilt

- $V' = \{e_1, e_3, e_4, e_5\} \subset V$
- $E' = \{\{e_1, e_3\}, \{e_1, e_5\}, \{e_3, e_4\}, \{e_3, e_5\}, \{e_4, e_5\}\} \subset E$

Aufgabe 7







$$Deg(G_a) = 3 + 3 + 3 + 4 + 3 = 16; |E| = 8$$

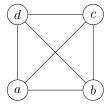
$$Deg(G_b) = 1 + 2 + 3 + 2 + 0 = 8; |E| = 4$$

$$Deg(G) = 2 + 2 + 2 + 2 + 2 = 10; |E| = 5$$

Behauptung: deg(G) = 2|E|

Beweis: Jede Kante ist adjazent zu genau zwei Knoten und wird so in der Summe aller Knotengrade doppelt gezählt.

Vollständiger Graph der Ordnung 4:



Aufgabe 9

Ein Graph mit 8 Knoten kann maximal

$$\frac{8\cdot7}{2} = 28$$

Kanten haben. Grund: Jeder der 8 Knoten kann mit 7 anderen Knoten verbunden werden. Das ergibt $8 \cdot 7$ Kanten. Auf diese Weise zählt man aber jede Kante doppelt, weshalb man das Produkt noch durch 2 dividieren muss.

Aufgabe 10

- (a) Wahr, denn e_{17} endet in v_8 .
- (b) Falsch, denn e_5 und e_6 enden nicht in einem gemeinsamen Knoten.
- (c) Wahr, denn v_5 und v_6 sind durch die Kante e_{11} verbunden.
- (d) Falsch, denn v_7 ist durch e_{15} mit v_{12} verbunden.
- (e) Wahr (in einem Pfad dürfen Knoten oder Kanten auch mehrfach vorkommen)
- (f) Falsch, denn bei einem Zyklus müssen Anfangs- und Endknoten übereinstimmen.
- (g) Wahr, denn es handelt sich um einen Zyklus in dem, abgesehen vom Start- und vom Endknoten alle Knoten *verschieden* sind.
- (h) Falsch, denn die Knoten v_{10} und v_5 sind nicht durch eine Kante verbunden.
- (i) Wahr, denn es gibt keine Kante, die einen Knoten mit sich selbst verbindet.
- (j) Wahr, denn zwischen zwei beliebigen (verschiedenen) Knoten gibt es einen Pfad, der diese miteinander verbindet.
- (k) Wahr, denn vom Knoten v_{10} gehen 4 Kanten aus.
- (l) Falsch, denn da jede Kante zu zwei Knotengraden gehört, muss der Grad des Graphen eine gerade Zahl sein $(\deg(G) = 2 \cdot 20 = 40)$.
- (m) Wahr, denn $v_2v_6v_3v_9v_8v_{13}v_1v_{14}v_4v_{10}v_{11}v_5v_{12}v_7$ ist ein solcher Pfad. Bemerkung: Ein Pfad, der jeden Knoten genau einmal besucht, heisst Hamiltonweg.

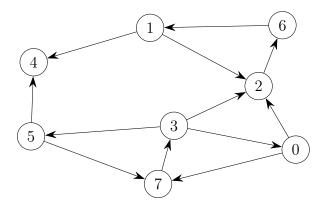
(a) Anzahl Cliquen mit 1 Knoten: 6

(b) Anzahl Cliquen mit 2 Knoten: 11

(c) Anzahl Cliquen mit 3 Knoten: 8

(d) Anzahl Cliquen mit 4 Knoten: 2

Aufgabe 12



starke Zusammenhangskomponenten:

$$V_1 = \{0, 7, 3, 5\}$$

$$V_2 = \{1, 2, 6\}$$

$$V_3 = \{4\}$$

Aufgabe 13

- (a) Ein Baum ist ein zusammenhängender azyklischer (ungerichteter) Graph
- (b) Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind.