Suchalgorithmen Übungen

Um ein Element x_1 in einem Array A_1 der Länge 1000 zu finden, benötigt ein sequentieller Algorithmus etwa 2 Sekunden. Wie lange benötigt derselbe Algorithmus, um ein Element x_2 in einem Array A_2 der Länge 2000 zu finden?

- (a) etwa 4 Sekunden
- (b) etwa 2 Sekunden
- (c) keine Vorhersage möglich

Da die 2 Sekunden davon abhängig sind, ob und wo sich das Element x_1 im Array A_1 befindet, lässt sich aus dem selben Grund für ein möglicherweise anderes Element x_2 in einer möglicherweise anderen Array A_2 keine Aussage machen. Also stimmt (c).

Gib die Laufzeitkomplexität der sequentiellen Suche in einem Array der Länge n für die folgenden Fälle an:

- (a) Best Case
- (b) Average Case
- (c) Worst Case

Es müssen zwei Fälle unterschieden werden:

(a) Das Element befindet sich in der Liste:

Best Case: O(1)

Average Case: O(n/2) = O(n)

Worst Case: O(n)

(b) Das gesuchte Element befindet sich nicht in der Liste:

Best Case: O(n)

Average Case: O(n)

Worst Case: O(n)

Eine Implementierung des Algorithmus für binäres Suchen benötigt 2 Sekunden, um herauszufinden, dass ein Element nicht in einem Array mit 10^4 Elementen vorkommt.

Wie lange benötigt dieselbe Implementierung auf dem gleichen Computer um herauszufinden, dass sich ein Element nicht in einem Array mit 10^8 Elementen befindet?

Laufzeitkomplexität für binäres Suchen: $T(n) = c \cdot \log n$

Wähle hier die Logarithmenbasis 10 (bequem zum Rechnen)

$$T(10^4) = C \log_{10}(10^4) = 4C = 2s$$
 \Rightarrow $C = \frac{1}{2}s$
 $T(10^8) = C \log_{10}(10^8) = \frac{1}{2}s \cdot 8 = 4s$

oder direkt durch Umformung:

$$T(10^8) = C \log_a(10^8) = C \log_a(10^4)^2 = 2 \cdot C \log_a(10^4) = 2 \cdot 2 s = 4 s$$

Die Zeitmessung für eine Implementierung des Algorithmus für binäres Suchen hat für die erfolglose Suche eines Elements in einem Array mit 10^6 Elementen eine Laufzeit von 20 Sekunden ergeben.

Wie lange benötigt dieselbe Implementierung auf dem gleichen Computer, um herauszufinden, dass sich das Element *nicht* in einem Array mit jeweils $2 \cdot 10^6$ Elementen befindet?

$$T(n) = C \cdot \log_b n$$

Wähle als Logarithmenbasis 2

$$T(10^6) = C \cdot \log_2 10^6 = C \cdot \log_2 (10^3)^2 = 2C \cdot \log_2 10^3$$

 $\approx 2C \cdot \log_2 2^{10} = 20C = 20 \text{ s}$
 $\Rightarrow C = 1 \text{ s}$

$$T(n) = C \cdot \log_b n$$

Wähle als Logarithmenbasis 2

$$T(10^6) = C \cdot \log_2 10^6 = C \cdot \log_2 (10^3)^2 = 2C \cdot \log_2 10^3$$

 $\approx 2C \cdot \log_2 2^{10} = 20C = 20 \text{ s}$
 $\Rightarrow C = 1 \text{ s}$

$$\Rightarrow C = 1s$$

$$T(2 \cdot 10^6) = C \cdot (\log_2 2 + \log_2 10^6) = C \cdot 1 + C \cdot \log_2 10^6$$

= 1 s + 20 s = 21 s

Bestimme die Anzahl der Vergleiche, die der "naive" Algorithmus für das String-Matching zum Auffinden des Musters GGCA im Textstring GGGAAAGGCAT benötigt.

G	G	G	Α	Α	Α	G	G	C	Α	Τ	Vergleiche
G	G	С	Α								3
	G	G	C	Α							3
		G	G	C	Α						2
			G	G	C	Α					1
				G	G	C	Α				1
					G	G	C	Α			1
						G	G	C	Α		4
To	tal										15

Bestimme die Anzahl der Vergleiche, die der Boyer-Moore-Horspool-Algorithmus für das String-Matching zum Auffinden des Musters GGCA im Textstring GGGAAAGGCAT benötigt.

pattern=GGCA
$$(m=4)$$

Das Symbol * steht für alle Buchstaben, die nicht im Suchmuster vorkommen.

Shift = Wert[pattern[j]] =
$$m-j-1$$
 (j=0, ..., $m-2$)

G	G	G	Α	Α	Α	G	G	C	Α	T	Vergleiche
G	G	С	Α								2
				G	G	C	Α				1
						G	G	C	Α		4
											_

Total 7

Erstelle schrittweise die Bad-Character-Table des Boyer-Moore-Horspool-Algorithmus für das Suchmuster SALATTELLER. Zeichen des Alphabets, die nicht im Suchmuster vorkommen, sind durch einen Stern (*) darzustellen.

Suchmuster: SALATTELLER (Länge: 11)

S	A	L	T	E	R	*	
11	11	11	11	11	11	11	Initialisierung
10	11	11	11	11	11	11	d(S,R) = 11 - 1 = 10
10	9	11	11	11	11	11	d(A,R) = 11 - 2 = 9
10	9	8	11	11	11	11	d(L,R) = 11 - 3 = 8
10	7	8	11	11	11	11	d(A, R) = 11 - 4 = 7
10	7	8	6	11	11	11	$d(\mathbf{T},\mathbf{R}) = 11 - 5 = 6$
10	7	8	5	11	11	11	$d(\mathbf{T},\mathbf{R}) = 11 - 6 = 5$
10	7	8	5	4	11	11	d(E,R) = 11 - 7 = 4
10	7	3	5	4	11	11	d(L,R) = 11 - 8 = 3
10	7	2	5	4	11	11	d(L,R) = 11 - 9 = 2
10	7	2	5	1	11	11	d(E,R) = 11 - 10 = 1

Gib den determinstischen endlichen Automaten an (graphisch oder als Tabelle), mit dem in einem beliebigen Text nach dem Muster ABAB gesucht werden kann.

s ist das längste Suffix von p[0:i]+x, das Präfix des Suchmusters p = ABAB ist.

q_i	p[0:i]+x	s	q_{i+1}
0	A	Α	1
0	В	ε	0
1	AA	Α	1
1	AB	AB	2
2	ABA	ABA	3
2	ABB	ε	0
3	ABAA	A	1
3	ABAB	ABAB	4
4	ABABA	ABA	3
4	ABABB	ε	0

Der DFA in graphischer Darstellung:

