Aufgabe 1

Eine Lehrerin protokolliert die Zeit für das Korrigieren von Prüfungen. Allfällige Pausen sind kurz und verteilen sich gleichmässig über die gesamte Korrekturdauer.

Zeitpunkt	korrigierte Prüfungen
14:21 Uhr	3
15:03 Uhr	5
16:07 Uhr	9
17:08 Uhr	14

- (a) Gib ein lineares Modell für die Anzahl der korrigierten Prüfungen in Abhängigkeit der verstrichenen Zeit an. Wähle selber einen Nullpunkt für die Zeitrechnung.
- (c) Bestimme die Modellparameter mit einer multiplen linearen Regression.
- (b) Schätze den Zeitpunkt für den Beginn und das Ende der Korrektur für insgesamt 20 Prüfungen.

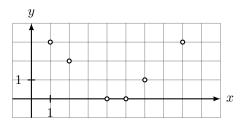
Aufgabe 2

Die folgende Tabelle enthält zufällige Zahlen.

\boldsymbol{x}	y
3	4
1	7
2	5
4	6

Berechne das Bestimmheitsmass der multiplen linearen Regression für folgende Modelle:

(a)
$$\hat{y}_a = \beta_0 + \beta_1 x$$


(b)
$$\hat{y}_b = \beta_0 + \beta_1 x + \beta_2 x^2$$

(c)
$$\hat{y}_c = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta x^3$$

Was stellst du fest?

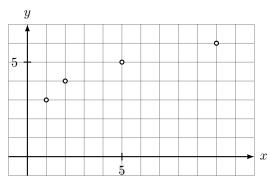
Aufgabe 3

Wähle aufgrund der folgenden Datenpaare eine passende aber möglichst einfache Modellgleichung $\hat{y} = \dots$ und bestimme die zugehörigen Modellparameter mit multipler linearer Regression.

Aufgabe 4

Welche Voraussetzungen müssen die Beispieldaten erfüllen, damit eine multiple lineare Regression rechnerisch durchführbar ist?

Aufgabe 5


Die folgende Tabelle enthält Daten zu den Bezinmotoren verschiedener Automodelle.

Leistung [kW]	Hubraum [cm ³]	Verbrauch $[l/100 km]$
55	1360	7.5
120	1796	8.5
76	1596	8.6
44	1242	5.7
86	1796	7.6
74	1598	7.5
44	1149	6.9
79	1598	7.2
103	2435	8.9

- (a) Führe eine multiple lineare Regression für den Benzinverbrauch in Abhängigkeit von Leistung und Hubraum durch.
- (b) Schätze mit dem Modell aus (a) den Verbrauch eines Autos mit einer Leistung von $85\,\mathrm{kW}$ und einem Hubraum von $1984\,\mathrm{cm}^3$

Aufgabe 6

Man vermutet, dass sich die unten abgebildete Punktwolke durch $\hat{y} = \beta_0 + \beta_1 \sqrt{x}$ modellieren lässt. Bestimme die Modellparameter mit multipler linearer Regression und gibt das Bestimmheitsmass an.

