Kegelschnitte Übungen (L+)

(a)
$$\frac{x^2}{36} + \frac{y^2}{16} = 1$$

(b)
$$c^2 = a^2 - b^2 \implies b^2 = a^2 - c^2 = 16 - 9 = 7$$

$$\frac{x^2}{16} + \frac{y^2}{7} = 1$$

(c)
$$F_1(8,0) \Rightarrow e = 8 \text{ und } a = 15$$

 $c^2 = a^2 - b^2 \Rightarrow b^2 = a^2 - c^2 = 225 - 64 = 161$
 $\frac{x^2}{225} + \frac{y^2}{161} = 1$

(a)
$$\varepsilon = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a} = \sqrt{\frac{a^2 - b^2}{a^2}} = \sqrt{\frac{a^2}{a^2} - \frac{b^2}{a^2}} = \sqrt{1 - \frac{b^2}{a^2}}$$

Wegen $a \ge b > 0$ ist $0 < \frac{b^2}{a^2} \le 1$ und damit $0 \le \varepsilon < 1$.

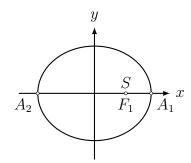
(b)
$$\bullet \varepsilon = 0 \Leftrightarrow \frac{b^2}{a^2} = 1 \Rightarrow a = b$$

Die Ellipse ist ein Kreis.

•
$$\varepsilon = 1 \quad \Leftrightarrow \quad \frac{b^2}{a^2} = 0 \quad \Rightarrow \quad b = 0$$

Die Ellipse degeneriert zu einer Strecke.

(c) Skizze:



$$\overline{A_1F_1} = 1.462 \cdot 10^8 \quad \overline{A_2F_1} = 1.511 \cdot 10^8$$

$$2a = \overline{A_1 A_2}$$

$$2a = 1.511 \cdot 10^8 + 1.462 \cdot 10^8$$

$$2a = 2.973 \cdot 10^8$$

$$a = 1.4865 \cdot 10^8$$

$$c = a - \overline{A_1 F_1} = 2.45 \cdot 10^6 \quad \Rightarrow \quad \varepsilon = \frac{c}{a} = 0.0165$$

Aufgabe 3

Setze $a=4,\,x=2$ und y=1 in die Koordinatengleichung der Ellipse ein:

$$\frac{2^2}{4^2} + \frac{1^2}{b^2} = 1$$

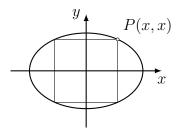
$$\frac{4}{16} + \frac{1}{b^2} = 1$$

$$\frac{1}{b^2} = \frac{3}{4}$$

$$b^2 = \frac{4}{3}$$

$$b = \sqrt{\frac{4}{3}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

Für ein Quadrat muss der Eckpunkt P gleiche Koordinaten haben.



$$\frac{x^2}{36} + \frac{x^2}{16} = 1$$

$$4x^2 + 9x^2 = 144$$

$$13x^2 = 144$$

$$x = \frac{12\sqrt{13}}{13}$$

$$s = 2x = \frac{24\sqrt{13}}{13} \approx 6.656$$

Aufgabe 5

Setze die Geradengleichung y=2x-1 in die Ellipsengleichung $9x^2+25y^2=225$ ein:

$$9x^{2} + 25(2x - 1)^{2} = 225$$

$$9x^{2} + 25(4x^{2} - 4x + 1) = 225$$

$$109x^{2} - 100x - 200 = 0$$

$$x_{1} = -0.971 \implies y_{1} = -2.943$$

$$x_{2} = 1.889 \implies y_{2} = 2.778$$

$$P_1(-0.971, -2.943), P_2(1.889, 2.778)$$

Setze $y_0 = \frac{1}{2}$ in die Koordinatengleichung der Ellipse ein:

$$x_0^2 + 25 \cdot \left(\frac{1}{2}\right)^2 = 25 \quad \Rightarrow \quad x_0^2 = \frac{75}{4} \quad \Rightarrow \quad x_0 = \frac{5\sqrt{3}}{2}$$

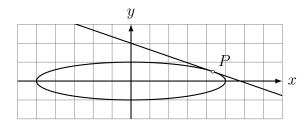
$$x^{2} + 25y^{2} = 25$$
 \Rightarrow $\frac{x^{2}}{25} + \frac{y^{2}}{1} = 1$ \Rightarrow $a = 5, b = 1$

Setze $a=5,\,b=1,\,x_0=\frac{5}{2}\sqrt{3},\,y_0=\frac{1}{2}$ in die Tangentengleichung der Ellipse ein:

$$\frac{x_0 x}{25} + \frac{y_0 y}{1} = 1$$

$$\frac{5\sqrt{3}\,x}{2\cdot 25} + \frac{y}{2} = 1 \quad ||\cdot 10$$

$$t \colon 2\sqrt{3}x + 5y = 10$$



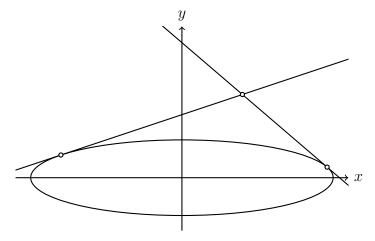
Koordinatengleichung auf Normalform bringen:

$$25x^2 + 400y^2 = 10^4$$
 \Rightarrow $e: \frac{x^2}{400} + \frac{y^2}{25} = 1$ \Rightarrow $a = 20, b = 5$

Punkt P(8,11) in die Polarengleichung einsetzen:

$$\frac{8x}{400} + \frac{11y}{25} = 1$$
 \Rightarrow $\frac{x}{50} + \frac{11y}{25} = 1$ $\stackrel{.50}{\Rightarrow}$ $x + 22y = 50$

$$p$$
: $x = 50 - 22y$ (einfacher als $y = \frac{50}{22} - \frac{1}{22}x$)



 $e \cap p$: (verwende die gegebene Gleichung von e)

$$25(50 - 22y)^{2} + 400y^{2} = 10^{4}$$

$$(50 - 22y)^{2} + 16y^{2} = 400$$

$$2500 - 2200y + 484y^{2} + 16y^{2} = 400$$

$$500y^{2} - 2200y + 2100 = 0$$

$$5y^{2} - 22y + 21 = 0$$

$$y_{1} = 3 \implies x_{1} = -16$$

$$y_{2} = 1.4 \implies x_{2} = 19.2$$

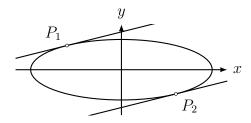
 $B_1(3,-16)$ und $B_2(1.4,19.2)$ in t einsetzen:

$$t_1: \frac{3}{400}x - \frac{16}{25}y = 1$$
 $\stackrel{\cdot 400}{\Rightarrow}$ $t_1: 3x - 256y - 400 = 0$

$$t_2 : \frac{1.4}{400}x - \frac{19.2}{25}y = 1 \quad \stackrel{\cdot 2000}{\Rightarrow} \quad t_2 : 7x - 1536y - 2000 = 0$$

Ellipsengleichung auf Normalform bringen:

$$4x^2 + 36y^2 = 144$$
 \Rightarrow $\frac{x^2}{36} + \frac{y^2}{4} = 1$ \Rightarrow $a = 6, b = 2$



Steigung der Tangente an eine Ellipse in einem Kurvenpunkt P(x, y):

$$m = -\frac{b^2}{a^2} \cdot \frac{x_0}{y_0} \quad \Rightarrow \quad \frac{1}{4} = -\frac{4}{36} \cdot \frac{x_0}{y_0} \quad \Rightarrow \quad y_0 = -\frac{4}{9}x_0$$

Setze $x = x_0$ und $y = y_0 = -\frac{4}{9}x_0$ in die Ellipsengleichung ein:

$$4x_0^2 + 36\left(-\frac{4}{9}x_0\right)^2 = 144$$

$$4x_0^2 + 36 \cdot \frac{16}{81}x_0^2 = 144 \quad || : 4$$

$$x_0^2 + \frac{16}{9}x_0^2 = 36 \quad || \cdot 9$$

$$9x_0^2 + 16x_0^2 = 324$$

$$25x_0^2 = 324$$

$$5x_0 = \pm 18$$

$$x_1 = \frac{18}{5} \quad \Rightarrow \quad y_1 = -\frac{8}{5} \quad \Rightarrow \quad P_1\left(\frac{18}{5}, -\frac{8}{5}\right)$$

$$x_2 = -\frac{18}{5} \quad \Rightarrow \quad y_2 = \frac{8}{5} \quad \Rightarrow \quad P_2\left(-\frac{18}{5}, \frac{8}{5}\right)$$

Berührpunkte in die Tangentengleichung einsetzen:

$$\frac{18}{5 \cdot 36} x - \frac{8}{5 \cdot 4} y = 1 \quad \Rightarrow \quad t_1 : \frac{1}{10} x - \frac{2}{5} y = 1$$

$$-\frac{18}{5 \cdot 36} x + \frac{8}{5 \cdot 4} y = 1 \quad \Rightarrow \quad t_2 : -\frac{1}{10} x + \frac{2}{5} y = 1$$

$$t_1 : x - 4y = 10$$

$$t_2 : -x + 4y = 10$$

$$y = 0.6x - 5$$
 \Rightarrow $x_0 = 3$ \Rightarrow $y_0 = 0.6 \cdot 3 - 5 = -3.2$

Löse die Tangentengleichung der Ellipse formal nach y auf

$$\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1 \quad || \cdot a^2b^2$$

$$b^2x_0x + a^2y_0y = a^2b^2 \quad || -b^2x_0x$$

$$a^2y_0y = -b^2x_0x + a^2b^2 \quad || : a^2y_0$$

$$b^2x_0 \qquad b^2$$

$$y = \underbrace{-\frac{b^2 x_0}{a^2 y_0}}_{m=0.6} x + \underbrace{\frac{b^2}{y_0}}_{q=-5}$$

Koeffizientenvergleich: $\frac{b^2}{-3.2} = -5 \implies b^2 = 16 \implies b = 4$

$$0.6 = -\frac{16 \cdot 3}{-3.2 \cdot a^2} \implies a^2 = \frac{16 \cdot 3}{3.2 \cdot 0.6} = 25 \implies a = 5$$

Aufgabe 10

(a)
$$y^2 = 2px \implies 16 = 8p \implies p = 2 \implies y^2 = 4x$$

(b)
$$p/2 = 6 \implies p = 12 \implies y^2 = 24x$$

(c)
$$p/2 = 2.5 \implies p = 5 \implies y^2 = 10x$$

Aufgabe 11

Ersetze x durch x - u: $y^2 = 2p(x - u)$

Gleichung der um u verschobenen Parabel: $y^2 = 2p(x-u)$

(a) P(0,4) in $y^2 = 2p(x+4)$ einsetzen:

$$16 = 2p(0+4)$$

$$p=2$$

$$\Rightarrow$$
 $y^2 = 4(x+4)$

(b) P(6,3) in $y^2 = 2p(x-3)$ einsetzen:

$$9 = 2p(6-3)$$

$$p = \frac{9}{6} = 1.5$$

$$\Rightarrow y^2 = 3(x-3)$$

Aufgabe 13

Ellipse:
$$\frac{x^2}{36} + \frac{y^2}{16} = 1$$

Parabel: $y^2 = 4x$

$$16x^2 + 36y^2 = 576$$

$$16x^2 + 36 \cdot 4x = 576$$

$$x^2 + 9x - 36 = 0$$

$$(x-3)(x+12) = 0$$

$$x_1 = 3$$

$$x_2 = -12$$
 (unbrauchbar)

$$y^2 = 4 \cdot 3 = 12 \quad \Rightarrow \quad y = \pm 2\sqrt{3}$$

$$S_1(3,2\sqrt{3}), S_2(3,-2\sqrt{3})$$

Aufgabe 14

Parabel: $y^2 = 2x \implies p = 1$

$$x_0 = 2$$
 \Rightarrow $y_0^2 = 2 \cdot x_0 = 4$ \Rightarrow $y_0 = 2 > 0$

 $x_0=2,\,y_0=2$ und p=1 in die Tangentengleichung einsetzen:

$$2y = 1(x+2) = x+2 \implies t: y = \frac{1}{2}x+1$$

(a) Parabel:
$$y^2 = 2x$$
 $(p = 1)$

$$P(-8,3) \notin Parabel$$
 Tangentegleichung $\Rightarrow Polare$

$$y_0y = p(x+x_0)$$
 \Rightarrow $3y = x-8$ \Rightarrow $g: y = \frac{x-8}{3}$

Parabel
$$\cap$$
 Polare: $\frac{(x-8)^2}{9} = 2x$

$$(x-8)^2 = 18x$$

$$x^2 - 16x + 64 = 18x$$

$$x^2 - 34x + 64 = 0$$

$$x_1 = 2 \quad \Rightarrow \quad y_1 = -2$$

$$x_2 = 32 \quad \Rightarrow \quad y_2 = 8$$

Tangentengleichungen $y_0y = p(x + x_0)$:

$$-2y = x + 2$$
 \Rightarrow $t_1: y = -\frac{1}{2}x - 1$

$$8y = x + 32$$
 \Rightarrow $t_2 : y = \frac{1}{8}x + 4$

(b) Tangentengleichung:

$$y_0 y = p(x + x_0)$$
 \Rightarrow $y = \frac{p}{y_0} x + \frac{px_0}{y_0} = mx + q$

Koeffizientenvergleich:
$$m = \frac{p}{y_0} = \frac{1}{y_0} = 1 \implies y_0 = 1$$

Parabelgleichung:
$$y_0^2 = 2px_0 \implies 1 = 2x_0 \implies x_0 = \frac{1}{2}$$

$$\Rightarrow P(\frac{1}{2},1)$$

Aufgabe 16

Gleichung der Tangente im Punkt $P(x_0, y_0)$:

$$y_0 y = p(x + x_0)$$
 \Rightarrow $y = \frac{p}{y_0} x + \frac{px_0}{y_0}$

Koeffizientenvergleich mit der Geraden y = x + 2:

$$\frac{p}{y_0} \stackrel{\text{(1)}}{=} 1 \quad \text{ und } \quad \frac{p \cdot x_0}{y_0} \stackrel{\text{(2)}}{=} 2$$

(1) in (2) einsetzen:
$$1 \cdot x_0 = 2 \implies x_0 = 2$$

$$x_0 = 2$$
 in $y = x + 2$ einsetzen: $y_0 = 2 + 2 = 4$

Aus (1) folgt jetzt p = 4

Gleichung der gesuchten Parabel: $y^2 = 8x$

Alternative Lösung (Berührbedingung verwenden)

$$(x+2)^{2} = 2px$$
$$x^{2} + 4x + 4 = 2px$$
$$x^{2} + (4-2p)x + 4 = 0$$

Die Graphen $y^2 = 2px$ und y = x + 2 haben genau einen Berührpunkt; also gilt D = 0.

$$(4-2p)^2 - 4 \cdot 1 \cdot 4 = 0$$

$$16 - 16p + 4p^2 - 16 = 0$$

$$4p^2 - 16p = 0$$

$$p(p-4) = 0$$

$$p = 0 \quad \text{nicht sinnvoll}$$

$$p = 4$$

 $\Rightarrow y^{=}8x$

Aufgabe 17

Koordinatengleichung der Hyperbel: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Asymptotengleichung der Hyperbel: $y = \pm \frac{b}{a} x$

(a)
$$a = 3, b = 2$$

Hyperbel: $\frac{x^2}{9} - \frac{y^2}{4} = 1;$

Asymptote: $y = \pm \frac{2}{3}x$

(b)
$$b = 3, c = 4 \implies a^2 = c^2 - b^2 = 16 - 9 = 7$$

Hyperbel: $\frac{x^2}{7} - \frac{y^2}{9} = 1;$

Asymptote: $y = \pm \frac{3}{\sqrt{7}}x = \pm \frac{3\sqrt{7}}{7}x$

Der Steigungsquotient der Asymptote wurde mit $\sqrt{7}$ erweitert, damit der Nenner wurzelfrei wird.

11

(c) P(4,0) und Q(5,3) liegen auf der Hyperbel

Setze x=4 und y=0 in die Hyperbelgleichung ein:

$$\frac{16}{a^2} - \frac{0}{b^2} = 1 \quad \Rightarrow \quad \frac{16}{a^2} = 1 \quad \Rightarrow \quad a = 4$$

Setze x = 5, y = 3 und a = 4 in die Hyperbelgleichung ein:

$$\frac{25}{16} - \frac{9}{h^2} = 1 \quad \Rightarrow \quad \frac{9}{h^2} = \frac{9}{16} \quad \Rightarrow \quad b = 4$$

Hyperbel:
$$\frac{x^2}{16} - \frac{y^2}{16} = 1$$

Asymptote:
$$y = \pm \frac{4}{4}x = \pm x$$

(d) Brennpunkt $F_1(8,0)$, grosse Halbachse a=6

$$F_1(c,0) = F_1(8,0) \implies c = 8$$

$$b^2 = c^2 - a^2 = 64 - 36 = 28$$

Hyperbel:
$$\frac{x^2}{36} - \frac{y^2}{28} = 1$$

Asymptote:
$$y = \pm \frac{\sqrt{28}}{6}x = \pm \frac{2\sqrt{7}}{6}x = \pm \frac{\sqrt{7}}{3}x$$

Aufgabe 18

$$H_1: \frac{x^2}{4} - \frac{y^2}{64} = 1 \quad \Rightarrow \quad x^2 - \frac{y^2}{16} \stackrel{\text{(1)}}{=} 4$$

$$H_2 \colon x^2 - \frac{y^2}{4} = 1 \quad \Rightarrow \quad x^2 \stackrel{(2)}{=} 1 + \frac{y^2}{4}$$

Setze (2) in (1) ein:
$$1 + \frac{y^2}{4} - \frac{y^2}{16} = 4$$

$$\frac{3y^2}{16} = 3$$

$$\frac{y^2}{16} = 1 \quad \Rightarrow \quad y = \pm 4$$

Setze
$$y^2 = 16$$
 in (2) ein: $x^2 = 1 + \frac{16}{4} = 5 \implies x = \pm \sqrt{5}$

$$H_1 \cap H_2 = \{(\sqrt{5}, 4), (\sqrt{5}, -4), (-\sqrt{5}, 4), (-\sqrt{5}, 4)\}$$

Aufgabe 19

$$\varepsilon = \frac{c}{a} = \frac{\sqrt{a^2 + b^2}}{a} = \frac{\sqrt{a^2 + b^2}}{\sqrt{a^2}} = \sqrt{\frac{a^2 + b^2}{a^2}} = \sqrt{\frac{a^2}{a^2} + \frac{a^2}{b^2}}$$
$$= \sqrt{1 + \frac{a^2}{b^2}} > \sqrt{1 + 0} = 1$$

Die Abschätzung mit > ist möglich, da $a^2/b^2 > 0$ ist.

$$25x^2 - 9y^2 \stackrel{(*)}{=} 225 \implies \frac{x^2}{9} - \frac{y^2}{25} = 1 \implies a = 3, b = 5$$

Die Steigung der Tangente im Hyperbelpunkt $P(x_P, y_P)$ kann durch Umformung der Tangentengleichung bestimmt werden.

$$\frac{x_P x}{9} - \frac{y_P y}{25} = 1 \implies \frac{y_P y}{25} = \frac{x_P x}{9} - 1 \implies y = \frac{25x_P}{9y_P} x - \frac{25}{y_P}$$

Aus dem Koeffizientenvergleich mit y = mx + q ergibt sich:

$$m = \frac{25x_P}{9y_P} = 1 \implies x_P = \frac{9}{25}y_p$$

Da $P(x_P, y_P) \in \text{Hyperbel}$, müssen x_P und y_P (*) erfüllen:

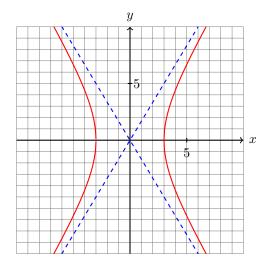
$$25 \cdot \frac{9^2}{25^2} \cdot y_p^2 - 9y_P^2 = 225 \implies -\frac{144}{25}y_P^2 = 225 \implies \text{keine L\"osung}$$

Es gibt keine Hyperbelpunkte mit der Tangentensteigung m=1.

Man hätte dies nach der Bestimmung von a=3 und b=5 durch eine Testrechnung vorwegnehmen können:

Asymptote:
$$y = \pm \frac{5}{3}$$

Da die Steigung einer Tangente an die Hyperbel nicht kleiner als die Steigung der Asymptote sein kann (siehe Abbildung), ist das Weiterrechnen unnötig.



Aufgabe 21

Durch einen Koeffizientenvergleich zwischen den beiden Formen der Tangentengleichung

$$y = \frac{4}{3}x - \frac{7}{3} \Leftrightarrow \frac{4}{3}x - y = \frac{7}{3} \Leftrightarrow \frac{4}{7}x - \frac{3}{7}y = 1$$

und

$$\frac{4x}{a^2} - \frac{3y}{b^2} = 1$$

lassen sich die Werte von a und b bestimmen:

$$\frac{4}{a^2} = \frac{4}{7} \quad \Rightarrow \quad a^2 = 7$$

$$\frac{3}{b^2} = \frac{3}{7} \quad \Rightarrow \quad b^2 = 7$$

$$\Rightarrow H \colon \frac{x^2}{7} - \frac{y^2}{7} = 1$$

Einsetzen von y = 2x + q in die Hyperbelgleichung:

$$\frac{x^2}{9} - \frac{(2x+q)^2}{4} = 1$$

$$4x^2 - 9(2x+q)^2 = 36$$

$$4x^2 - 9(4x^2 + 4qx + q^2) = 36$$

$$-32x^2 - 36qx - 9q^2 - 36 = 0$$

$$32x^2 + 36qx + 9q^2 + 36 = 0$$

$$\alpha x^2 + \beta x + \gamma = 0$$

... hat mindestens Lösung, wenn $D = \beta^2 - 4\alpha\gamma \ge 0$ gilt:

$$(36q)^{2} - 4 \cdot 32 \cdot (9q^{2} + 36) \ge 0$$
$$1296q^{2} - 1152q^{2} + 4608 \ge 0$$
$$144q^{2} - 4608 \ge 0$$
$$q^{2} \ge 32$$
$$|q| \ge \pm 4\sqrt{2}$$

- (a) für $|q| > 4\sqrt{2}$
- (b) für $|q| = 4\sqrt{2}$