Aufgabe 1

Stelle den Vektor $\vec{a} = (-1, 8) \in \mathbb{R}^2$ als homogenen Koordinatenvektor $\vec{a} \in \mathbb{R}^3$ dar.

Aufgabe 2

Stelle den homogenen Koordinatenvektor $\underline{\vec{a}} = (7, -5, 5) \in \mathbb{R}^3$ als einfachen Koordinatenvektor $\vec{a} \in \mathbb{R}^2$ dar.

Aufgabe 3

Bestimme eine Koordinatengleichung der Gerade durch die Punkte A(5,3) und B(1,2) mittels homogener Koordinaten.

Aufgabe 4

Bestimme den Schnittpunkt der Geraden mit den Gleichungen g: 2x - 5y + 3 = 0 und h: 4x + 2y - 1 = 0 mittels homogener Koordinaten.

Aufgabe 5

Bestimme eine Gleichung der Geraden s, die durch den Schnittpunkt S_1 der Geraden mit den Gleichungen

$$g_1$$
: $5x + 2y + 1 = 0$ und h_1 : $-x + 7y = 0$

sowie durch den Schnittpunkt S_2 der Geraden mit den Gleichungen

$$g_2$$
: $3y + 4 = 0$ und h_2 : $6x + 8y + 9 = 0$ geht.

Aufgabe 6

Weise nach, dass die Geraden g: -4x + 6y + 5 = 0 und h: 6x - 9y + 1 = 0 parallel sind, indem du zeigst, dass sie sich in einem Fernpunkt schneiden.

Aufgabe 7

Gegeben sind die Punkte P(3,4) und Q(5,5). Bestimme eine Gleichung der Geraden, die durch den Punkt P und den Fernpunkt in Richtung von \overrightarrow{OQ} geht.

Aufgabe 8

Gegeben sind die Punkte P(3,4) und Q(5,5). Erhält man ein sinnvolles Resultat, wenn man mittels homogener Koordinaten eine Gleichung der Geraden durch die Fernpunkte der Richtungen \overrightarrow{OP} und \overrightarrow{OQ} bestimmt?