Darstel	lende	Geometrie	
Darster	шие	стеонцепте	

Lösung

Übungsblatt 1

$$B(0|-13|8)$$
 liegt in $+\pi_2$

$$C(6|-11|-6)$$
 liegt in der Koinzidenzebene

$$D(4|-8|-10)$$
 (liegt im IV. Quadranten)

$$E(3|-6|3)$$
 liegt in der Symmetrieebene

$$F(-6|-4|0)$$
 liegt in $-\pi_1$

$$G(-8|-2|4)$$
 (liegt im II. Quadranten)

$$H$$
 kein DG-Punkt!

$$I(-2|3|8)$$
 (liegt im II. Quadranten)

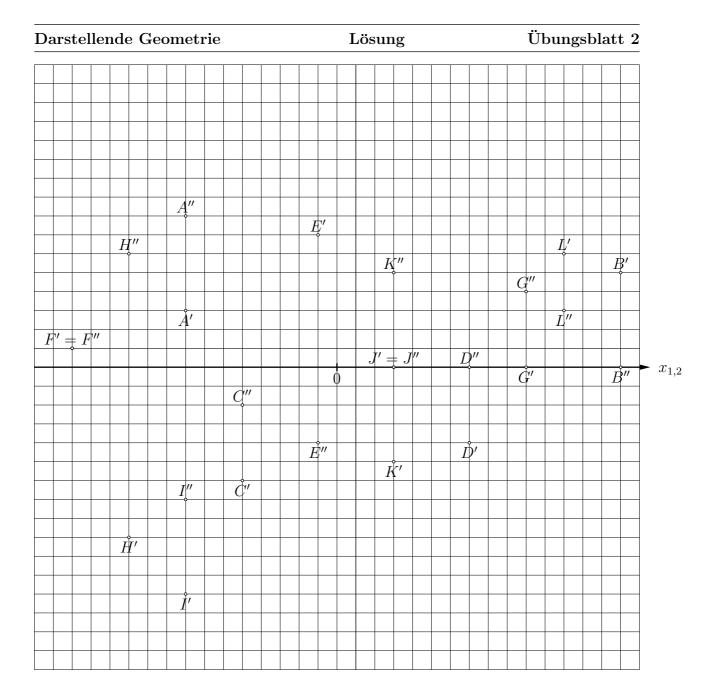
$$J(-5|5|-5)$$
 liegt in der Symmetrieebene

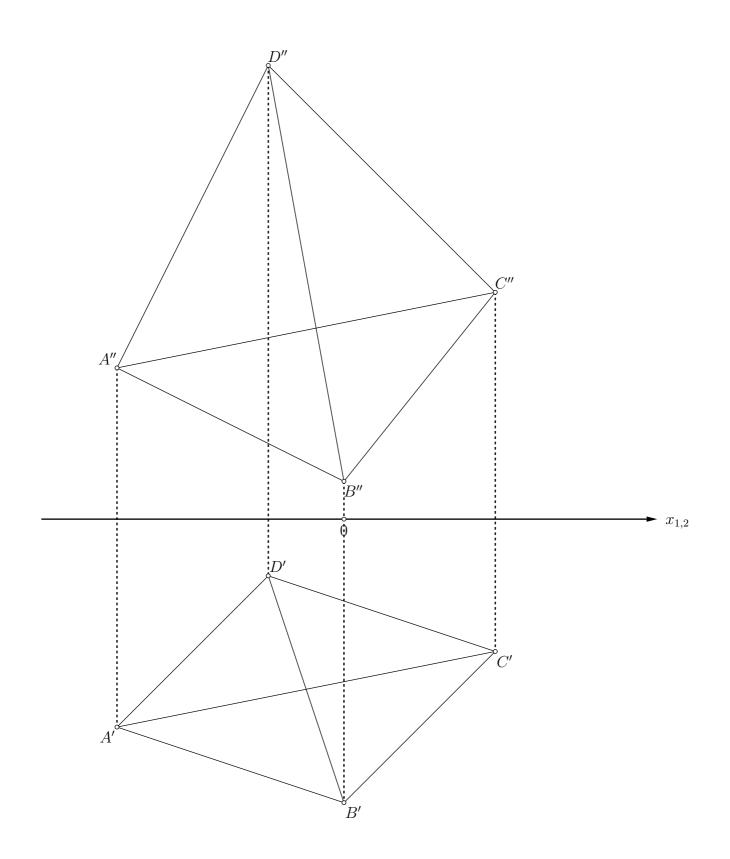
$$K(-3|8|-9)$$
 (liegt im III. Quadranten)

$$L(0|10|0)$$
 liegt auf der $x_{1,2}$ -Achse

$$M(9|12|-6)$$
 (liegt im IV. Quadranten)

$$N(-11|15|11)$$
 liegt in der Koinzidenzebene





Sichtbarkeitsunterschied

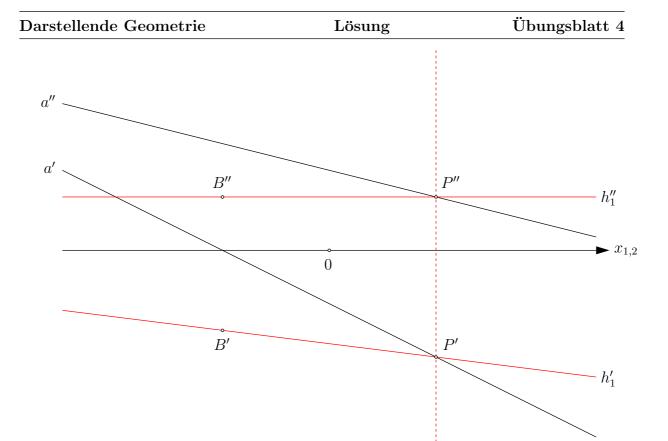
Grundriss:Betrachte den "Kreuzungspunkt" o
. Dieser Punkt ist gemeinsamer Grundriss zweier verschiedener Punkt
e $T\in AC$ und $U\in BD.$

Im Aufriss erkennt man: U'' liegt höher als T'', somit U höher als $T \Rightarrow$ Im Grundriss ist $U \in BD$ sichtbar.

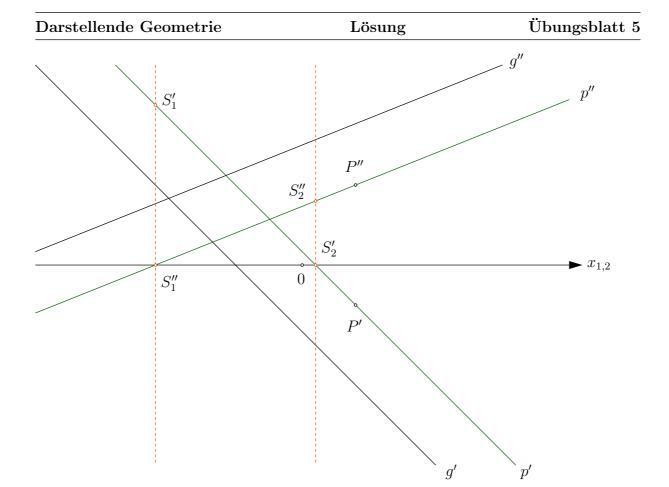
Aufriss: $V \in AC$ und $W \in BD$

Im Grundriss ist $U \in BD$.

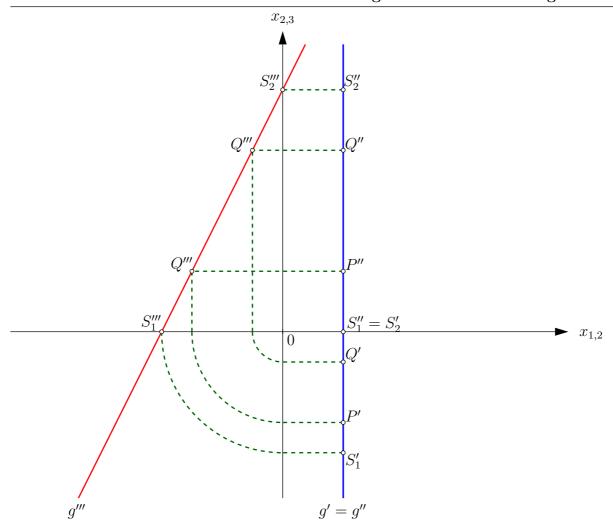
Im Aufriss erkennt man: W' liegt weiter vorne als V', somit W vor $V \Rightarrow$ Im Aufriss ist $W \in BD$ sichtbar.



- 1. $h_1'' \parallel x_{1,2}$ durch B''
- $2. \ h_1'' \cap a'' \to P''$
- 3. $\operatorname{Ord}(P'') \cap a' \to P'$
- 4. $h'_1 = (B'P')$

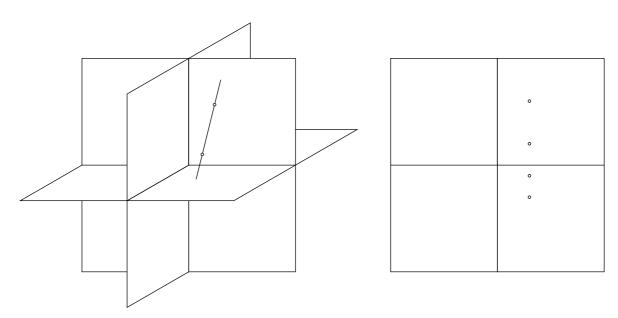


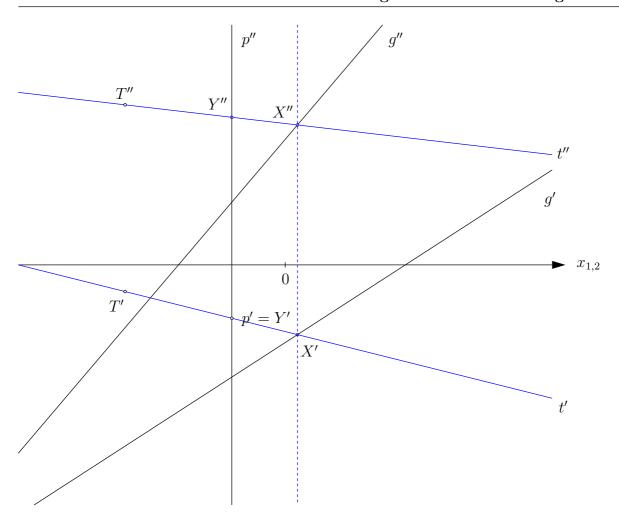
- (a) 1. $p' \parallel g'$ durch P'
 - 2. $p'' \parallel g''$ durch P''
- (b) 1. $p'' \cap x_{1,2} \to S_1''$
 - 2. $\operatorname{Ord}(S_1'') \cap p' \to S_1'$
 - 3. $p' \cap x_{1,2} \to S'_2$
 - 4. $\operatorname{Ord}(S_2') \cap p'' \to S_2''$



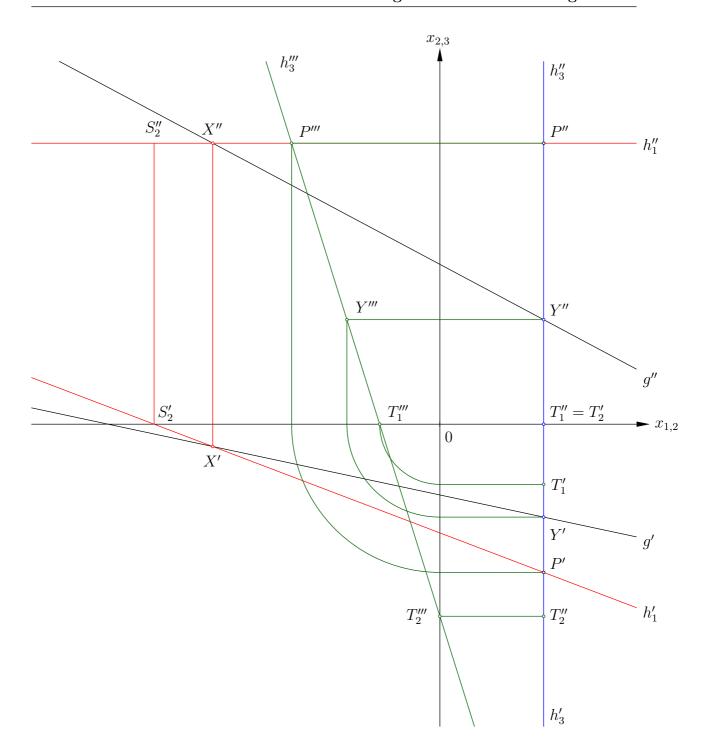
- 1. P''' und Q''' gemäss räumlicher Skizze konstruieren (Seitenriss)
- 2. $(P'''Q''') \to g'''$
- 3. $g''' \cap x_{1,2} \to S_1'''$
- 4. $g''' \cap x_{2,3} \to S_2'''$
- 5. Aus $S_1^{\prime\prime\prime}$ und $S_2^{\prime\prime\prime}$ erhält man S_1^\prime und $S_2^{\prime\prime}$ wie in 1.

Hinweis: Die gegebene Gerade g ist eine 3. Hauptgerade (parallel zu π_3). Grund- und Aufriss fallen in der Zweitafelprojektion zusammen. Die Lage im Raum ist damit nicht eindeutig bestimmt.



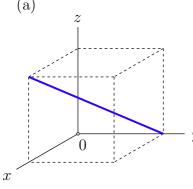


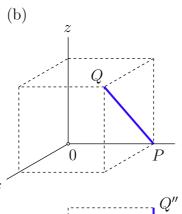
- 1. $p' \rightarrow Y'$
- $2. \ (T'Y') \to t'$
- 3. $t' \cap g' \to X'$
- 4. $\operatorname{Ord}(X') \cap g'' \to X''$
- 5. $(T''X'') \to t''$
- 6. $t'' \cap p'' \rightarrow Y''$

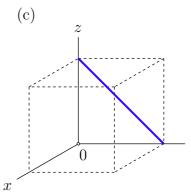


- 1. $h_1'' \parallel x_{1,2} \operatorname{durch} P''$
- $2. \ h_1'' \cap g'' \to X''$
- 3. $\operatorname{Ord}(X'') \cap g' \to X'$
- 4. $(X'P') \to h'_1$
- 5. $\operatorname{Ord}(P') = \operatorname{Ord}(P'') \to h_3' = h_3''$
- 6. $g' \cap h'_3 \to Y'$
- 7. $g'' \cap h_3'' \to Y''$
- 8. Seitenriss von $Y, P \rightarrow Y''', P''''$
- 9. $(Y'''P''') \to h_3'''$
- 10. Spurpunkte von h_3 im Seitenriss $\to T_1''', T_2'''$
- 11. T_1''' zurück nach $\pi_1,\,\pi_2\to T_1',\,T_1''$
- 12. T_2''' zurück nach $\pi_1, \, \pi_2 \to T_2', \, T_2''$

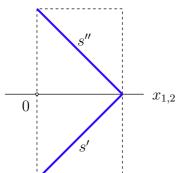
- (a) g ist eine erste Hauptgerade
- (b) möglich
- (c) keine Zweitafelprojektion einer Geraden
- (d) möglich
- (e) g ist drittprojizierend und liegt in der Symmetrieebene
- (f) möglich
- (g) g ist eine zweitprojizierende Gerade
- (h) g ist eine erstprojizierende Gerade
- (i) g ist eine dritte Hauptgerade
- (j) keine Zweitafelprojektion einer Geraden
- (k) g ist drittprojizierend und liegt in der Koinzidenzebene
- (l) keine Zweitafelprojektion einer Geraden



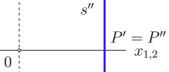




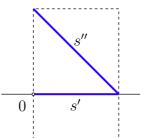
 \boldsymbol{x}



s''

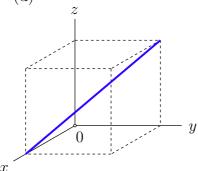


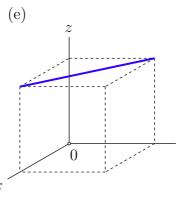
s'



 $x_{1,2}$

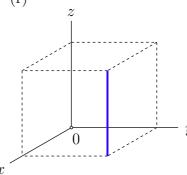
(d)

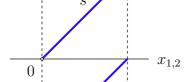




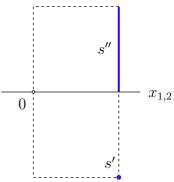
(f)

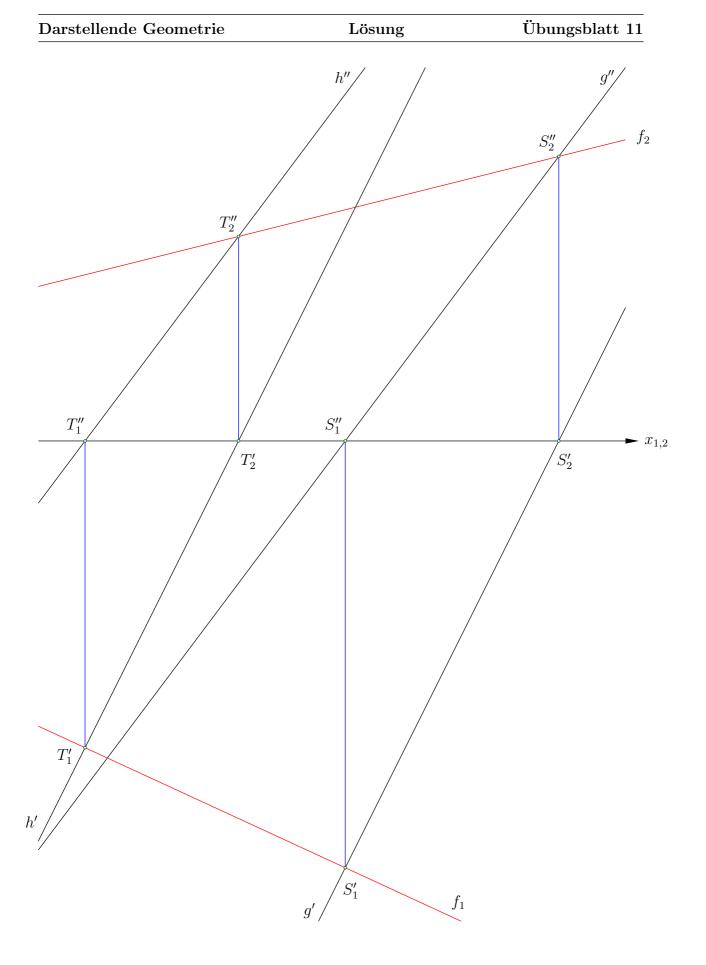
y



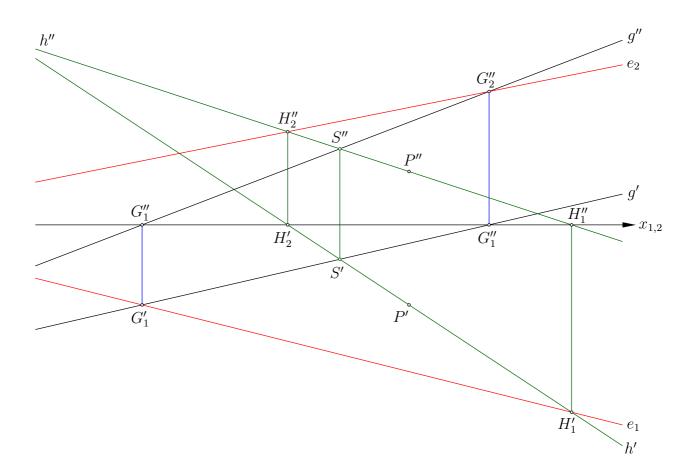


s''

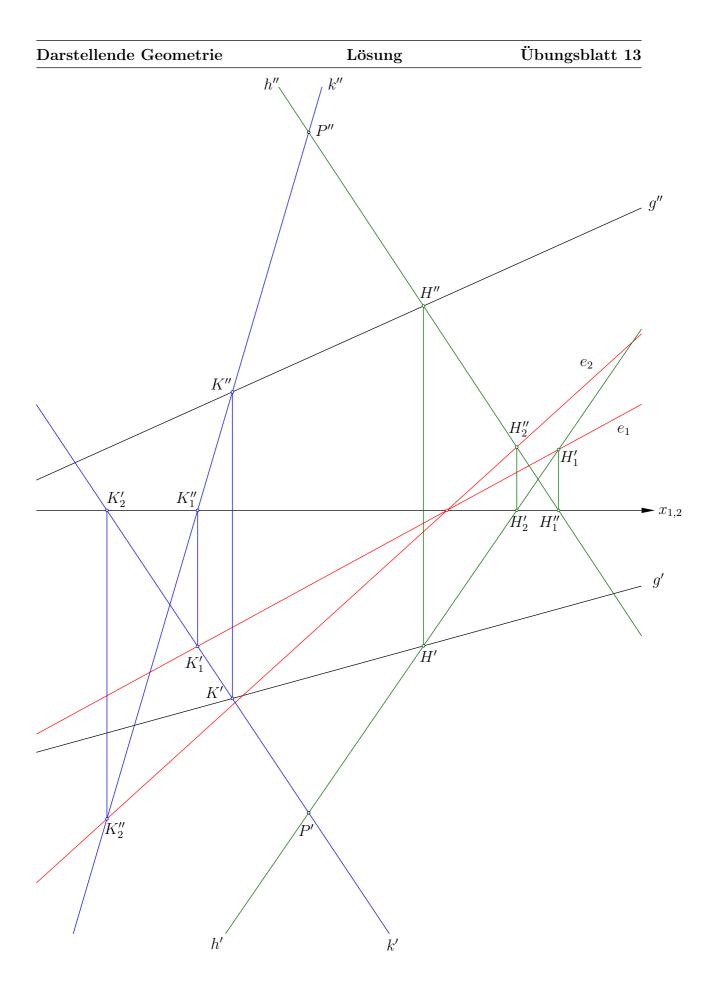




- 1. Spurpunkte von $g \to S_1'', \, S_1', \, S_2', \, S_2''$ gemäss erster Standardaufgabe
- 2. Spurpunkte von $h \to T_1'',\, T_1',\, S_2',\, S_2''$ gemäss erster Standardaufgabe
- 3. $(S_1'T_1') \to f_1$
- 4. $(S_2''T_2'') \to f_2$

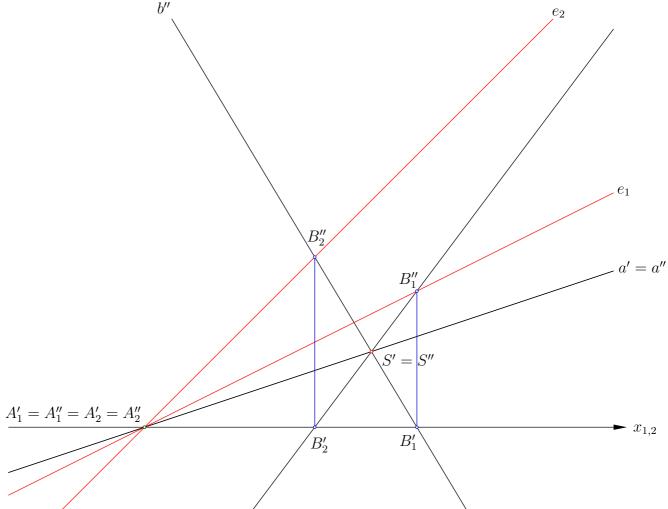


- 1. Spurpunkte von $g \to G_2',\, G_2'',\, G_1'',\, G_1'$ (gemäss zweiter Standardaufgabe)
- 2. Hilfsgerade durch P', welche g'schneidet $\rightarrow h',\,S'$
- 3. $\operatorname{Ord}(S') \cap g'' \to S''$
- 4. $(P''S'') \rightarrow h''$
- 5. Spurpunkte von $h \to H_2', \, H_2'', \, H_1'', \, H_1''$ (gemäss zweiter Standardaufgabe)
- 6. $(G_1'H_1') \rightarrow e_1$ und $(G_2''H_2'') \rightarrow e_2$



- 1. Hilfsgerade durch P', die g' schneide
t $\rightarrow h',\,H'$
- 2. $\operatorname{Ord}(H') \cap g'' \to H''$
- 3. $(P''H'') \to h''$
- 4. Spurpunkte von $h \to H_2',\, H_2'',\, H_1'',\, H_1''$ (gemäss erster Standardaufgabe)
- 5. zweite Hilfsgerade durch P', die g'
 schneidet $\rightarrow k',\,K'$
- 6. $\operatorname{Ord}(K') \cap g'' \to K''$
- 7. $(P''K'') \to k''$
- 8. Spurpunkte von $k \to K_2', \, K_2'', \, K_1'', \, K_1''$ (gemäss erster Standardaufgabe)
- 9. $(H_1'K_1') \rightarrow e_1$ und $(H_2''K_2'') \rightarrow e_2$

- 1. $a' \cap b' \to S'$ und $a'' \cap b'' \to S''$
- 2. Spurpunkte von $a \to A_1, A_2$
- 3. Spurpunkte von $b \to B_1, B_2$
- 4. $(A_1'B_1') \to e_1$
- 5. $(A_2''B_2'') \to e_2$



a ist eine Koinzidenzgerade (das bedeutet, dass a in der Koinzidenzebene liegt). Man überlege sich, warum dann alle Spurpunkte von a auf einem Punkt der Rissachse zusammenfallen müssen.

1.
$$a' \cap x_{1,2} \to A'_2, A''_2$$

2.
$$a" \cap x_{1,2} \to A''_1, A'_1$$

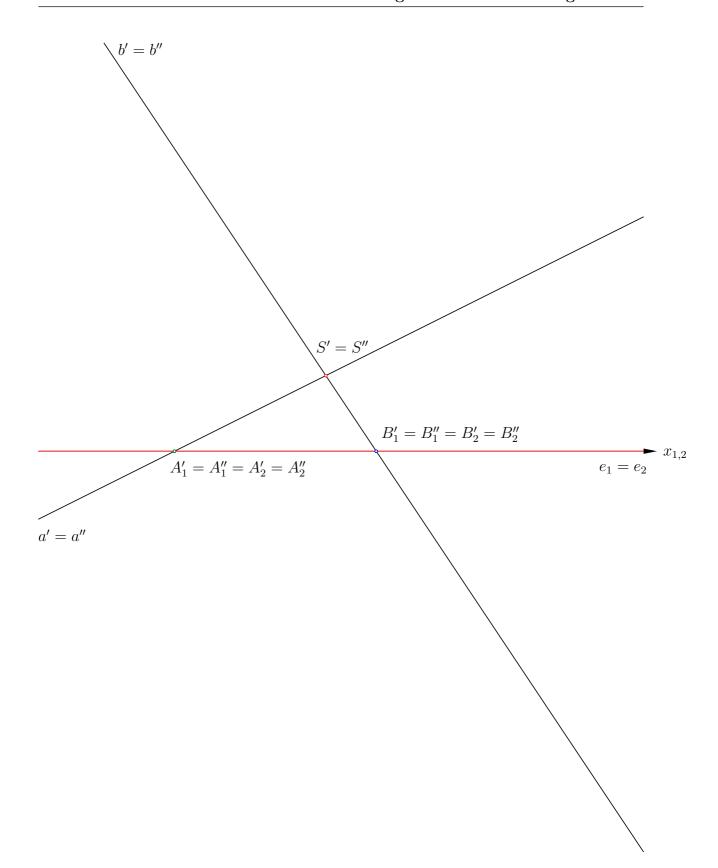
3. Spurpunkte von
$$b \to B_2',\, B_2'',\, B_1'',\, B_1''$$

4.
$$(A_1'B_1') \rightarrow e_1$$
 und $(A_2''B_2'') \rightarrow e_2$

Die Gerade a ist drittprojizierend und liegt in der Koinzidenzebene. Man überlege sich, warum

- ullet a keinen ersten Spurpunkt und keinen zweiten Spurpunkt besitzt
- \bullet die Spuren e_1 und e_2 der von a und baufgespannten Ebene ε parallel zur Rissachse $x_{1,2}$ liegen müssen

- 1. Spurpunkte von $b \to B_2',\, B_2'',\, B_1'',\, B_1'$ (gemäss erster Standardaufgabe)
- 2. Gerade durch B_1' parallel zu $x_{1,2} \to e_1$
- 3. Gerade durch B_2'' parallel zu $x_{1,2} \to e_2$



Die Geraden a und b liegen in der Koinzidenzebene. Man überlege sich, warum die von a und b aufgespannte Ebene ε ebenfalls die Koinzidenzebene sein muss und warum die Spuren der Koinzidenzebene mit der Rissachse $x_{1,2}$ zusammenfallen.

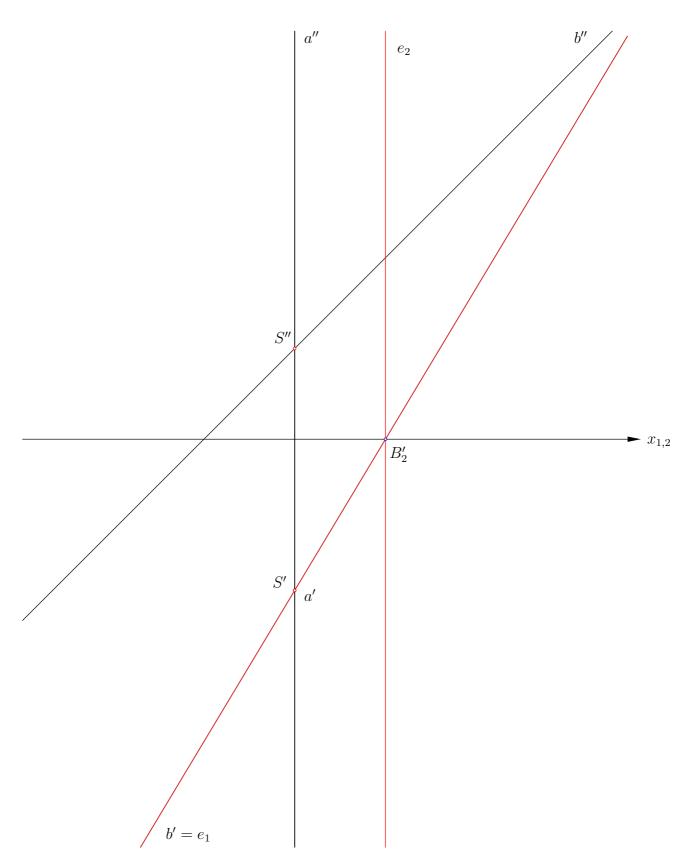
Natürlich lässt sich dies auch "konstruieren":

1.
$$a' \cap b' \to S'$$
 und $a'' \cap b' \to S''$

2.
$$a' \cap x_{1,2} \rightarrow A'_2 = A''_2$$
 und $a'' \cap x_{1,2} \rightarrow A''_1 = A'_1$

3.
$$b'\cap x_{1,2}\to B_2'=B_2''$$
 und $b''\cap x_{1,2}\to B_1''=B_1'$

4.
$$(A'_1B'_1) \to e_1 \text{ und } (A''_2B''_2) \to e_2$$



Die Gerade a' ist ersprojizierend. Dann muss auch ε erstprojizierend sein. Daraus folgt

- \bullet b' fällt mit der ersten Spurgeraden e_1 zusammen
- $\bullet\,$ die zweite Spurgerade e_2 steht senkrecht auf $x_{1,2}$

1.
$$a' \to S'$$
 und $a'' \cap b'' \to S''$

2.
$$b' \rightarrow e_1$$

3.
$$b' \cap x_{1,2} \to B'_2$$

4. Normale von
$$B_2'$$
 auf $x_{1,2} \to e_2$

Es handelt sich um einen Spezialfall der Aufgabe von Übungsblatt 18. Die Gerade b ist eine Koinzidenzgerade.

1.
$$a' \cap b' = S'$$
 und $a'' \cap b'' = S''$

2.
$$b' \rightarrow e_1$$

3.
$$a' \cap x_{1,2} \to B'_2$$

4. Normale von
$$B_2'$$
 auf $x_{1,2} \to e_2$

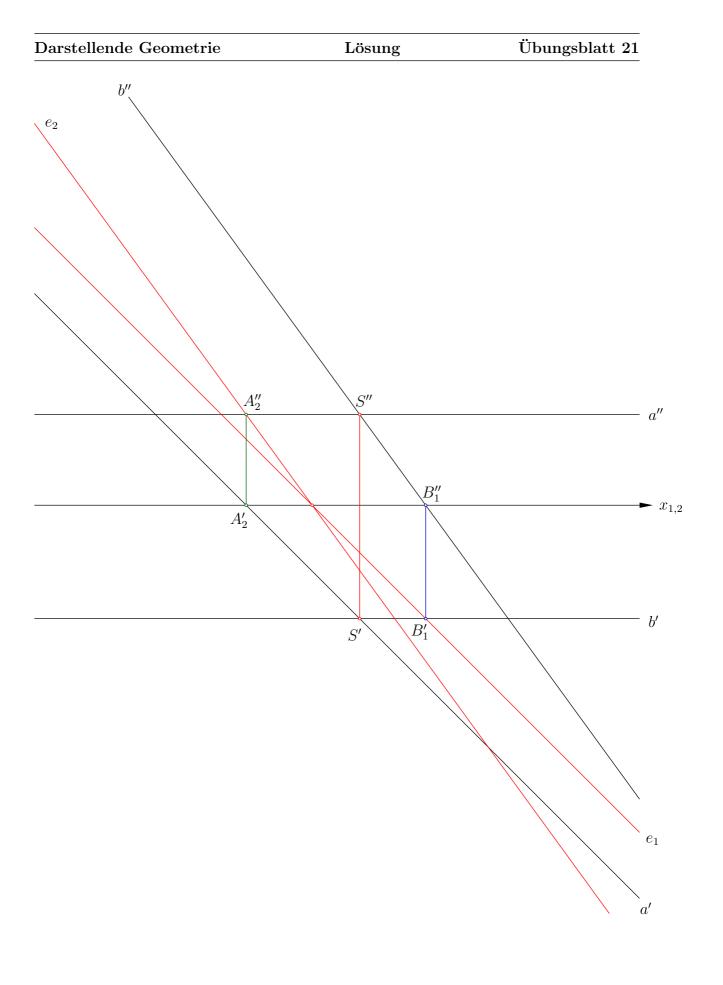
Es handelt sich um einen Spezialfall der Aufgabe von Übungsblatt 18. Die Gerade b ist eine erste Hauptgerade.

1.
$$a' \cap b' = S'$$
 und $a'' \cap b'' = S''$

2.
$$b' \rightarrow e_1$$

3.
$$a' \cap x_{1,2} \to B'_2$$

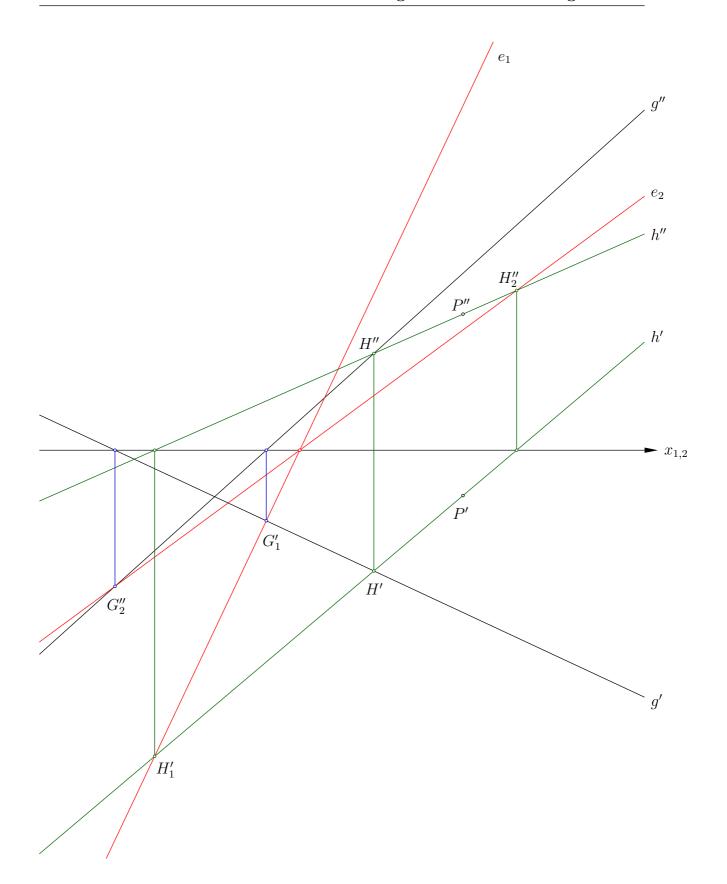
4. Normale von
$$B_2'$$
 auf $x_{1,2} \to e_2$



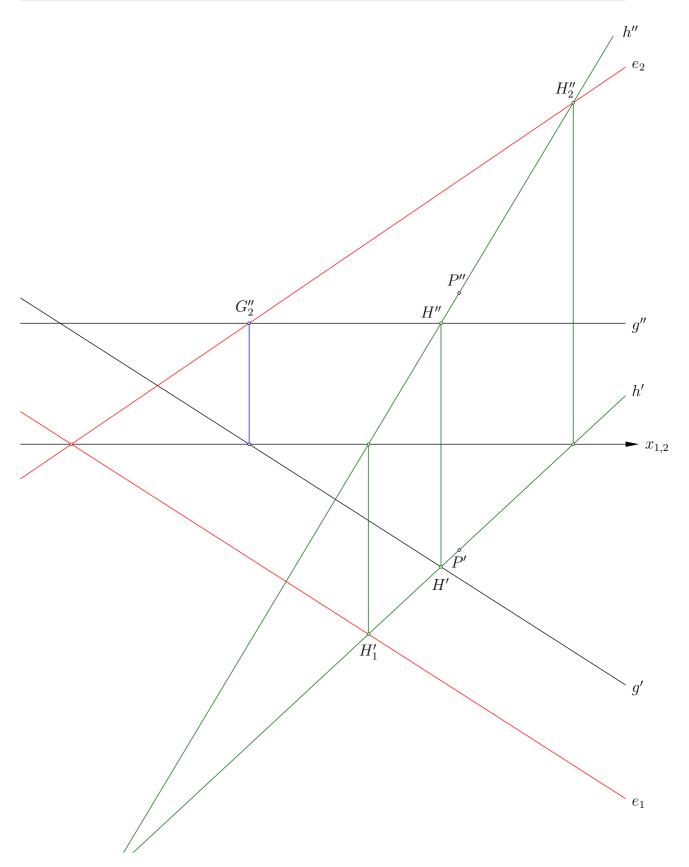
Die Gerade a hat erste Hauptlage. Daher muss die erste Spur einer Ebene, welche a enthält, parallel zu a' sein.

Die Gerade b hat zweite Hauptlage. Daher muss die zweite Spur einer Ebene, welche b enthält, parallel zu b'' sein.

- 1. $a' \cap b' \to S'$ und $a'' \cap B'' \to S''$
- 2. Zweiter Spurpunkt von $a \to A_2'$ und A_2''
- 3. Erster Spurpunkt von $b \to B_1''$ und B_1'
- 4. Parallele zu a'durch $B_1' \to e_1$
- 5. Parallele zu b''durch $A_2'' \to e_2$



- 1. Spurpunkte von ggemäss 2. Standardaufgabe $\rightarrow G_1',\,G_2''$
- 2. Grundriss einer Hilfsgeraden durch P', die g'schneidet $\rightarrow h',\, H'$
- 3. $\operatorname{Ord}(H') \cap g'' \to H''$
- 4. $(P''H'') \to h''$
- 5. Spurpunkte von hgemäss 2. Standardaufgabe $\to H_1',\,H_2''$
- 6. $(G_1'H_1') \to e_1$
- 7. $(G_2''H_2'') \to e_2$



g ist eine erste Hauptgerade. Man überlege sich, warum dann e_1 parallel zu g' sein muss. Also konstruiert man zuerst H'_1 , verschiebt g' parallel durch H'_1 und gewinnt e_2 , indem man die Gerade durch G''_2 und den Schnittpunkt von e_1 mit der Rissachse und G''_2 zeichnet.

- 1. Spurpunkt G_2 von g gemäss 2. Standardaufgabe $\to G_2''$
- 2. Grundriss einer Hilfsgeraden durch P', die g' schneidet $\to h'$, H'
- 3. $\operatorname{Ord}(H') \cap g'' \to H''$
- 4. $(P''H'') \to h''$
- 5. Spurpunkte von h gemäss 2. Standardaufgabe $\to H_1', H_2''$
- 6. $(G_1'H_1') \to e_1$
- 7. $(G_2''H_2'') \to e_2$

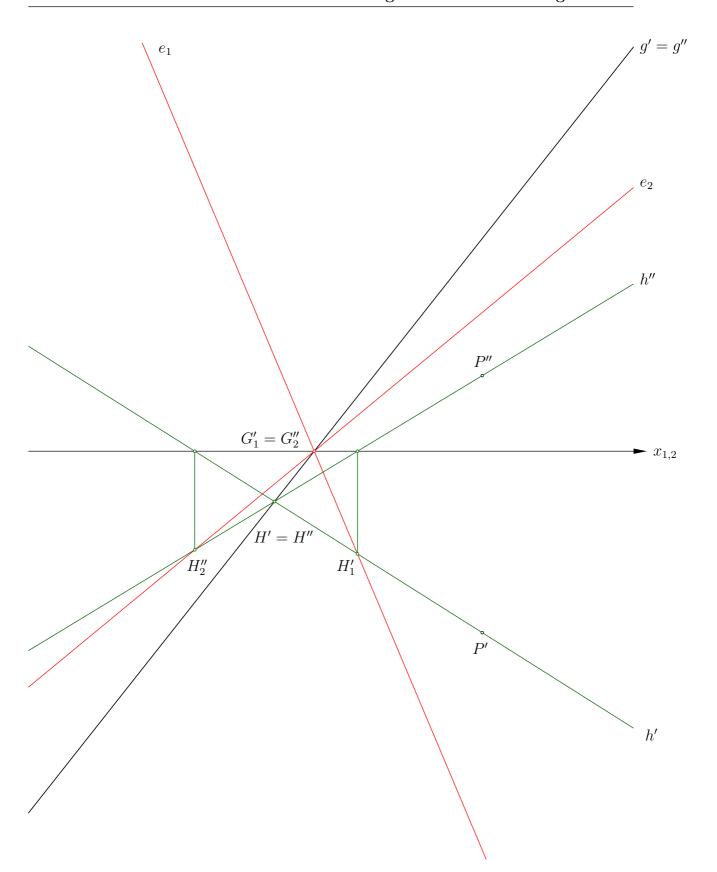
gist eine ersprojizierende Gerade. Man überlege sich, warum dann die zweite Spur e_2 parallel zu $g^{\prime\prime}$ sein muss.

${\bf Konstruktions bericht}$

1.
$$(G_1'P') \to e_1$$

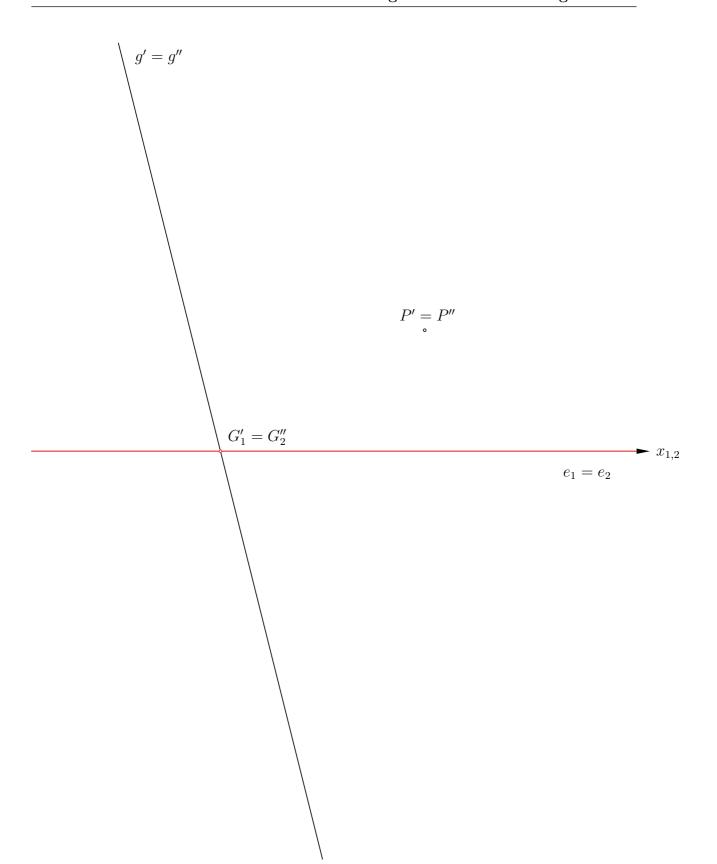
2.
$$e_1 \cap x_{1,2} \to E' = E''$$

3. Gerade durch
$$E''$$
 parallel zu $g'' \to e_2$



gist eine Koinzidenzgerade. Man überlege sich, warum die Spurpunkte G_1 und G_2 von gam gleichen Ort auf der Rissachse liegen.

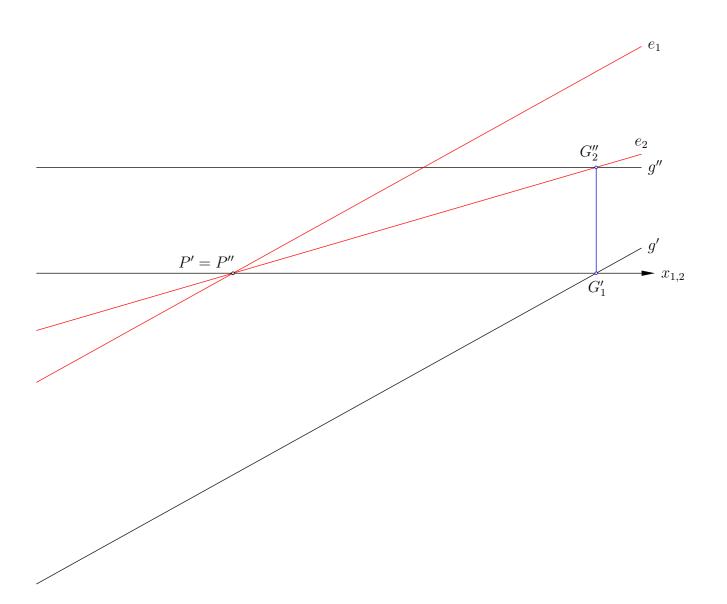
- 1. Grundriss einer Hilfsgerade durch P', die g'schneidet $\rightarrow h',\, H'=H''$
- 2. Spurpunkte von $h \to H_1', H_1''$
- 3. $g' \cap x_{1,2} \to G'_1 = G''_2$
- 4. $(G_1'H_1') \to e_1$
- 5. $(G_2''H_2'') \to e_2$



Die Gerade g und der Punkt P liegen in der Koinzidenzebene. Somit ist die von g und P aufgespannte Ebene ε die Koinzidenzebene.

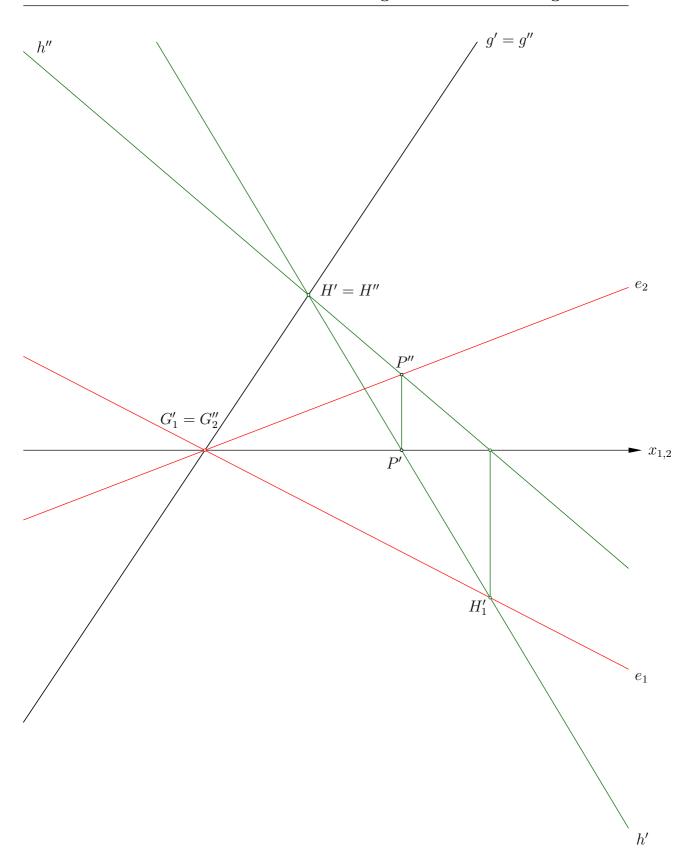
Man überlege sich, warum die Spuren der Koinzidenzebene mit der Rissachse $x_{1,2}$ zusammenfallen.

1.
$$x_{1,2} \to e_1 \text{ und } x_{1,2} \to e_2$$



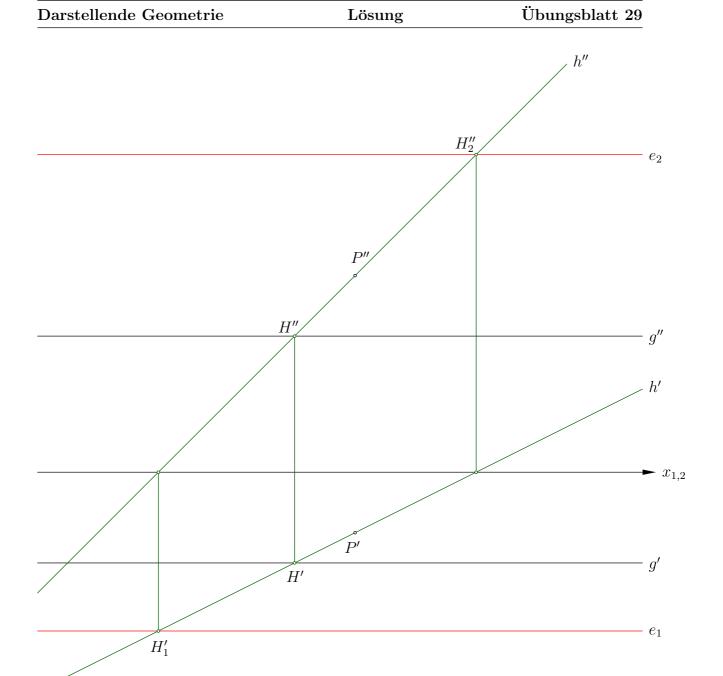
- $\bullet\,$ Da $P\in\varepsilon$ auf der Rissachse liegt, müssen die Spuren e_1 und e_2 von ε durch P gehen.
- Die Gerade g ist eine erste Hauptgerade und dann ist die erste Spur e_1 parallel zu g'. Siehe z. B. Übungsblatt 21 oder 23.

- 1. Zweiter Spurpunkt von $g \to G_2', G_2''$
- 2. $(P''G_2'') \to e_2$
- 3. Gerade durch P' parallel zu $g' \to e_1$



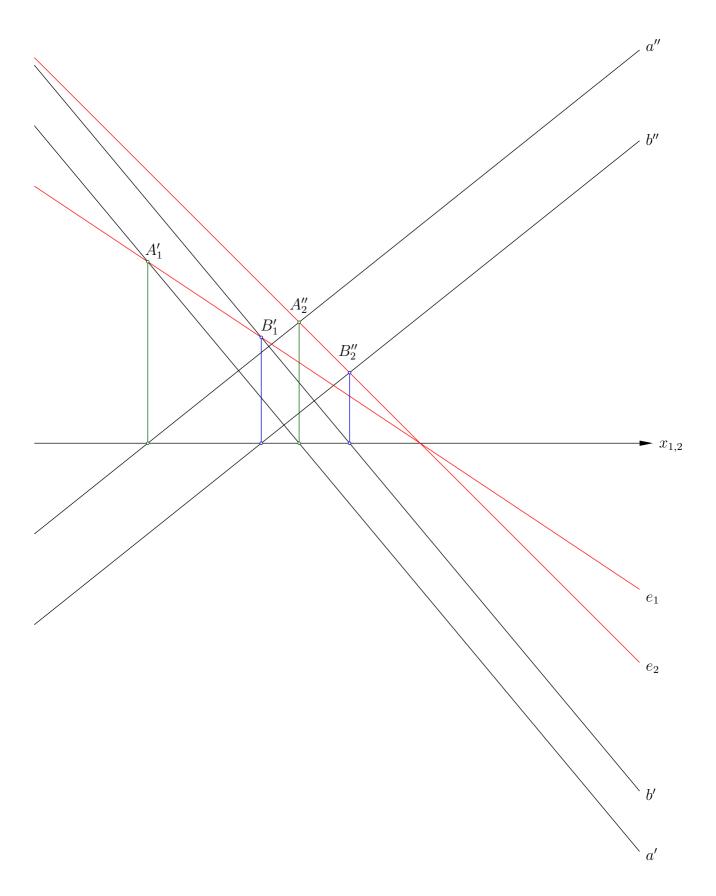
- Die Gerade g liegt in der Koinzidenzebene. Daher müssen die Spuren von e_1 und e_2 durch den Schnittpunkt von g mit $x_{1,2}$ gehen.
- Der Punkt P liegt in π_2 . Zusammen mit der oberen Bemerkung ist die Lage von e_2 bestimmt.

- 1. $g'' \cap x_{1,2} \to G_2''$
- 2. $(P''G_2'') \to e_2$
- 3. Grundriss einer Hilfsgerade durch P', die g' schneidet $\to h_1, H'$
- 4. Erster Spurpunkt von $g \to H_1'$
- 5. $(P'H_1') \to e_1$



- Die Gerade g ist drittprojizierend. Also ist auch die Ebene ε drittprojizierend.
- Beide Spuren einer drittprojizierendene Ebene (sofern diese keine erste oder zweit Hauptebene ist) sind parallel zur Rissachse $x_{1,2}$
- Wer das nicht einsieht, kann die Konstruktionsschritte 1–5 nochmals mit einer zweiten Hilfsgeraden k' durch P' durchführen und erhält so die Spurpunkte K'_1 und K''_2 . Mit H'_1 und H''_2 lassen sich dann die Spurgeraden e_1 und e_2 konstruieren.

- 1. Grundriss einer Hilfsgeraden durch P', die g' schneidet $\to h_1, H'$
- 2. Grundriss des ersten Spurpunkts von $g \to H'_1$
- 3. Aufriss des Zweiten Spurpunkts von $g \to H_2''$
- 4. Parallele zu $x_{1,2}$ durch $H_1' \to e_1$
- 5. Parallele zu $x_{1,2}$ durch $H_2'' \to e_2$



- 1. Spurpunkte von $a \to A_1', A_2''$
- 2. Spurpunkte von $b \to B_1', \, B_2''$
- 3. $(A_1'B_1') \to e_1$
- 4. $(A_2''B_2'') \to e_2$

 H_1'

 $-e_1$

a und b sind drittprojizierende Geraden; also ist auch die von ihnen aufgespannte Ebene ε drittprojizierend. Daher sind die Spuren von ε parallel zur Rissachse $x_{1,2}$. (Siehe auch Übungsblatt 29)

- 1. Grundriss einer Hilfsgerade, die a' und b' schneidet $\rightarrow h'$, A', B'
- 2. $\operatorname{Ord}(A') \cap a'' \to A''$ und $\operatorname{Ord}(B') \cap b'' \to B''$
- 3. $(A''B'') \to h''$
- 4. Spurpunkte von $h \to H_1', H_2''$
- 5. Parallele zu $x_{1,2}$ durch $H_1' \to e_1$
- 6. Parallele zu $x_{1,2}$ durch $H_2'' \to e_2$

Lösung

Darstellende Geometrie

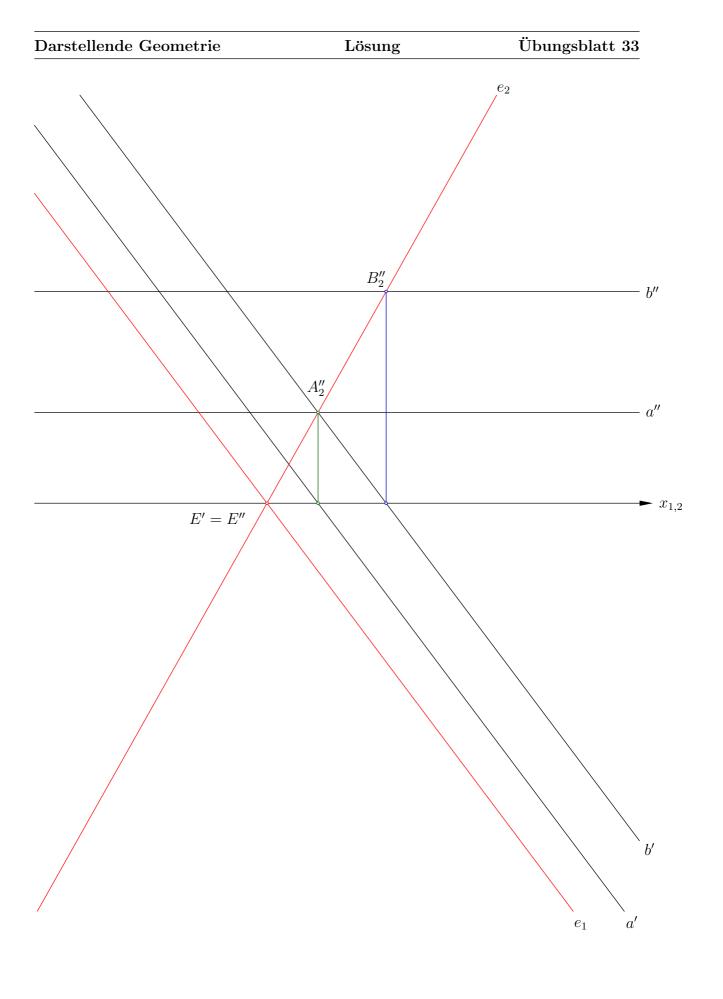
Die Geraden a und b sind erstprojizierend; also ist auch die von ihnen aufgespannte Ebene ε erstprojizierend. Somit steht die zweite Spur e_2 senkrecht zur Rissachse $x_{1,2}$.

1.
$$a' \to A'_1$$
 und $b' \to B'_1$

2.
$$(A_1'B_1') \to e_1$$

3.
$$e_1 \cap x_{1,2} \to E'$$

4. Lot von
$$E'$$
 auf $x_{1,2} \to e_2$



Die Geraden a und b sind erste Hauptgeraden. In diesem Fall muss die erste Spur e_1 der Ebene ε parallel zu a' bzw. b' sein.

- 1. Aufriss des 2. Spurpunktes von $a \to A_2^{\prime\prime}$
- 2. Aufriss des 2. Spurpunktes von $b \to B_2''$
- 3. $(A_2''B_2'') \to e_2$
- 4. $e_2 \cap x_{1,2} \to E'' = E'$
- 5. Parallele zu a'durch $E' \to e_1$