- 1. Du kannst die Annahmen des Nagel-Schreckenberg-Modells aufzählen:
 - einspurige, zelluläre Fahrbahn
 - jede Zelle ist entweder leer oder besetzt
 - diskrete, nichtnegative Geschwindigkeiten mit v_{max}
 - Kollisionsfreiheit
- 2. Du kannst die Schritte des Update-Algorithmus für wenige Zellen und einen gegebenen Anfangszustand operativ ausführen. Für Schritt (3) wird eine Folge von Zufallszahlen gegeben.
 - (1) Beschleunigen
 - (2) Abbremsen
 - (3) Trödeln mit der Wahrscheinlichkeit p
 - (4) Bewegen
- 3. Du kannst aufgrund der Modellparameter für die Zellengrösse und die Zeitschritte die realen Geschwindigkeiten berechnen.
- 4. Du kannst für einen vorgegebenen Anfangszustand den oben genannten Algorithmus in einem Raster für maximal 4 Runden manuell durchführen. Zur Durchführung von Schritt (3) ist eine Folge von Zufallszahlen gegeben.
- 5. Du kannst beschreiben, welches reale Phänomem sich durch das Modell erklären lässt.
- 6. Du kannst anhand der graphischen Darstellung über die Zeit Rückschlüsse auf die Werte der Modellparameter ziehen.
- 7. Du kannst das für die Grafiken verwendete PBM-Bildformat interpretieren und umgekehrt einfache Schwarzweiss-Rasterbilder im PBM-Bildformat darstellen.
- 8. Du kannst die Ausgaben von Python-Fragmenten beschreiben, die ähnlichen Code wie beim Programmieren der Nagel-Schreckenberg-Simulation enthalten. Genauer:
 - Lesen von Elementen aus Listen und Matrizen (=Listen von Listen).
 - Durchlaufen, Verändern und Addieren von Listenelementen mit for-Schleifen.
 - Anhängen von Elementen an eine Liste mit der append()-Methode.
 - Erzeugen einfacher Listen und Matrizen mit List-Comprehensions.
 - Du kannst beschreiben, welche Art von Zufallszahlen die aus dem random-Modul importierten Funktionen random() und randint(a,b) erzeugen.
 - Du kannst die Elemente einer Liste L, die zuvor mit map(str, L) in Zeichenketten verwandelt wurden, mit der Methode '<string>'.join(map(str, L)) zu einer einzigen Zeichenkette verbinden.
 - Du kannst Listen elementweise kopieren.
 - Du kannst erkennen, wie die Elemente einer Liste L mit dem Modulo-Operator (%) zyklisch verschoben werden.