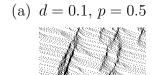
Aufgabe 1

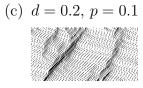
4		2		2			1						
5		3		3			2						
2		1		2			2						
1		1		2			2						
	1		1			2		2					
	2		2			3		3					
	2		2			2		3					
	2		2			1		3					
		2			2		1			3			
		3			3		2			4			
		2			1		2			4			
		1			0		2			4			
			1		0			2				4	

Aufgabe 2

Ein Fahrzeug bewegt sich im Modell mit 4 Zellen pro Zeitschritt. Somit:

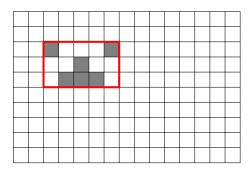

$$v_{\rm real} = \frac{4 \cdot 10 \, \mathrm{m}}{2 \, \mathrm{s}} = 20 \, \frac{\mathrm{m}}{\mathrm{s}} = 20 \cdot \frac{3600}{1000} \, \frac{\mathrm{km}}{\mathrm{h}} = 20 \cdot 3.6 \, \frac{\mathrm{km}}{\mathrm{h}} = 72 \, \frac{\mathrm{km}}{\mathrm{h}}$$

Aufgabe 3


3			1		2										,
4			2		3										
2			1		3										
		2		1			3								
		3		2			4								
		1		2			4								
			1			2				4					
			2			3				5					
			2			3				5					
					2			3					5		
					3			4					5		
					3			4					5		
	5						3				4				

Die Fahrzeuge werden immer schneller und erreichen früher oder später alle die Maximalgeschwinkdigkeit, wenn ihr Abstand gross genug wird.

Aufgabe 4


(b)
$$d = 0.2, p = 0.0$$

Aufgabe 5

P1 ist der *Identifier* für das Portable Bitmap-Format (PBM). Die darauf folgenden beiden Zahlen codieren in dieser Reihenfolge die *Breite* und *Höhe* des Bildes. Danach folgen die PBM-Farbwerte für die Pixel und zwar 0 für Weiss und 1 für Schwarz. Zum Trennen der Daten können Leerzeichen, Tabulatoren oder Zeilenschaltungen verwendet werden.

P1 5 3 1 0 0 0 1 0 0 1 0 0 0 1 1 1 0

