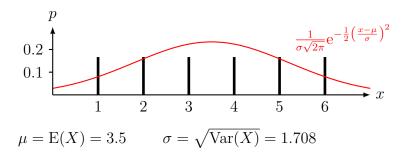
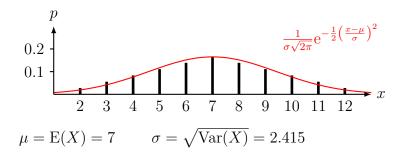
Die Normalverteilung ist eine stetige~Wahrscheinlichkeitsverteilung. Genauer gesagt: eine Wahrscheinlichkeitsdichte. Wir erhalten z. B. näherungsweise eine Normalverteilung, wenn wir immer grössere Summen einer unabhängigen und gleichverteilten Zufallsvariablen X bilden.

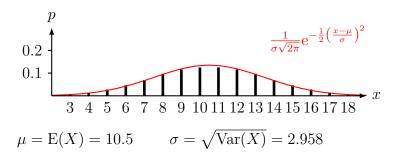
Augenzahl beim Wurf eines fairen Spielwürfels



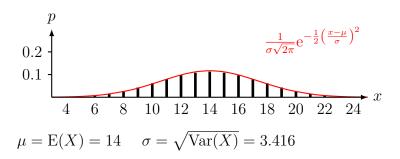
Summe der Augenzahlen von zwei fairen Spielwürfeln



Summe der Augenzahlen von drei fairen Spielwürfeln



Summe der Augenzahlen von vier fairen Spielwürfeln



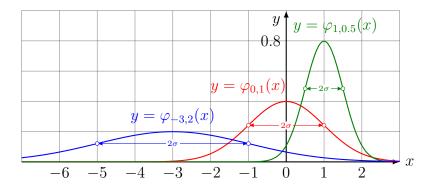
Die Dichtefunktion der Normalverteilung

Bei vielen Verteilungen kann diese "Glockenform" durch eine anpassbare Funktion ersetzt werden. Dies ist die Funktion

$$\varphi_{\mu,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}} = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

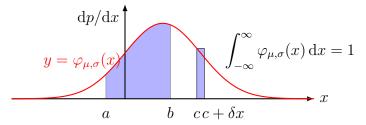
Da diese Funktion für beliebige reelle Werte von x definiert ist, handelt es sich um die Verteilung einer stetigen Zufallsgrösse. Die Parameter μ und $\sigma>0$ sind der Erwartungswert bzw. die Standardabweichung dieser Zufallsgrösse. An der Stelle $x=\mu$ liegt der Hochpunkt der Kurve und bei $x=\mu\pm\sigma$ liegen die beiden Wendepunkte. Je grösser σ ist, desto breiter und flacher ist die Kurve.

Die Normalverteilung für einige Parameterwerte



Wahrscheinlichkeitsdichte

Die Funktionswerte von $\varphi_{\mu,\sigma}(x)$ sind Wahrscheinlichkeitsdichten, die erst durch Integration zu Wahrscheinlichkeiten werden. Wahrscheinlichkeitsdichten sind nichtnegativ und die Fläche zwischen der Kurve und der x-Achse muss den Inhalt 1 haben. Achtung: Wahrscheinlichkeitsdichten können Werte grösser als 1 haben.



$$P(a \le X \le b) = P(a < X < b) = \int_a^b \varphi_{\mu,\sigma}(x) dx$$

$$P(c < X < c + \delta x) \approx \varphi_{\mu,\sigma}(c) \cdot \delta x$$
 für kleine δx

Die Standardnormalverteilung $\varphi_{0,1}(x)$

Die Normalverteilung mit $\mu = 0$ und $\sigma = 1$ wird Standardnormalverteilung genannt.

Die Variablentransformation $x \to x - \mu$ bewirkt eine horizontale Verschiebung der Kurve $y = \varphi_{0,1}(x)$ und verursacht somit keine Änderung der Fläche zwischen Kurve und x-Achse.

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-\mu)^2} dx$$

Die Variablentransformation $(x - \mu) \to (x - \mu)/\sigma$ bewirkt hingegen eine Multiplikation des Flächeninhalts mit dem Faktor σ . Damit auch $\varphi_{\mu,\sigma}(x)$ eine Wahrscheinlichkeitsdichte ist, muss die transformierte Funktion noch durch σ dividiert werden.

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-\mu)^2} dx = \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx$$

Der Normierungsfaktor der Standardnormalverteilung

$$\left(\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx\right)^2 = \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx \cdot \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} e^{-\frac{x^2+y^2}{2}} dx\right) dy = \int_{0}^{2\pi} \left(\int_{0}^{\infty} e^{-\frac{r^2}{2}} r dr\right) d\vartheta$$

$$u = r^2/2 \int_{0}^{2\pi} \left(\int_{0}^{\infty} e^{-u} du\right) d\vartheta = \int_{0}^{2\pi} 1 d\vartheta = 2\pi$$

$$\Rightarrow \int_{0}^{\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi} \quad \Rightarrow \quad \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{x^2}{2}} dx = 1$$

Die schlechte Nachricht

Abgesehen vom Normierungsfaktor lassen sich Integrale der Form

$$\frac{1}{\sigma\sqrt{2\pi}} \int_a^b e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{\sqrt{2\pi}\sigma} \int_a^b e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} dx$$

nicht elementar (also mittels eine Stammfunktion) berechnen. Daher transformierte man früher eine Normalverteilung $\varphi_{\mu,\sigma}(x)$ in die Standardnormalverteilung $\varphi_{0,1}(x)$ und Berechnete die Wahrscheinlichkeiten anhand tabellierter Werte der Verteilungsfunktion

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{x^2}{2}} dx.$$

Heute lassen sich diese Werte jedoch bequem mit einem entsprechenden Taschenrechenr oder Computerprogramm ausgeben.

3