Grenzwerte (Aufgabe 1.9) neu

Die Funktion f hat an der Stelle x_0 den Grenzwert g, wenn für jede gegen x_0 konvergierende Folge von Zahlen x_1, x_2, x_3, \ldots aus dem Definitionsbereich von f, die zugehörige Folge der Funktionswerte $f(x_1), f(x_2), f(x_3), \ldots$ gegen die Zahl g konvergiert.

In diesem Fall ist der Ausdruck $\lim_{x\to x_0} f(x) = g$ definiert.

- Der Grenzwert x_0 der Folge muss nicht im Definitionsbereich von f liegen (nur die Folgeglieder).
- Verlangt man, dass alle Folgeglieder x_1, x_2, x_3, \ldots kleiner als x_0 sind, spricht man von einem linksseitigen Grenzwert und schreibt $\lim_{x \to x_0^-} f(x) = g$.
- Verlangt man, dass alle Folgeglieder x_1, x_2, x_3, \ldots grösser als x_0 sind, spricht man von einem rechtsseitigen Grenzwert und schreibt $\lim_{x\to x_0^+} f(x) = g$.
- Ist eine Funktion f an der Stelle x_0 stetig, dann gilt $\lim_{x\to x_0} f(x) = f(x_0)$; der Grenzwert x_0 der Folge darf also einfach in die Funktion "eingesetzt" werden.

(a)
$$\lim_{x \to 1} (x^2 + x - 1) = 1 + 1 - 1 = 2$$
 [$f(x) = x^2 + x - 1$ ist stetig]

(b)
$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = \frac{1 + 2 - 3}{1 - 1} = \frac{0}{0}$$
 \to Signal zum Faktorisieren und Kürzen $\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 3)}{x - 1} = \lim_{x \to 1} (x + 3) = 4$

(c) Vorgehen: Wähle eine Folge x_1, x_2, x_3, \ldots die von links gegen $x_0 = 1$ konvergiert und untersuche ob und gegen welchen Wert die Folge der Funktionswerte $y_1 = f(x_1), y_1 = f(x_2), y_3 = f(x_3), \ldots$ konvergiert.

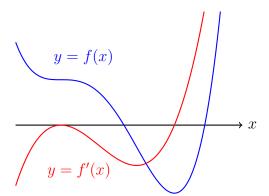
- (d) $\lim_{x\to\infty}\frac{x^9}{2^x}=0$ [Exponentialfunktionen wachsen/fallen schneller als Potenzfunktionen]
- (e) $\lim_{x\to\infty} \sin(x)$ exisitiert nicht [lässt sich am Graphen von $y=\sin(x)$ erkennen]
- (f) $\lim_{x\to 0^+} \ln(x) = -\infty$ [lässt sich am Graphen von $y = \ln(x)$ erkennen]

Der Differentialquotient (Aufgabe 2.4)

$$f \colon y = x^2; \ x_0 = 3$$

$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = \lim_{h \to 0} \frac{(3+h)^2 - 9}{h}$$
$$= \lim_{h \to 0} \frac{9 + 6h + h^2 - 9}{h} = \lim_{h \to 0} \frac{6h + h^2}{h}$$
$$= \lim_{h \to 0} \frac{h(6+h)}{h} = \lim_{h \to 0} (6+h) = 6$$

Der Differentialquotient (Aufgabe 2.10)



Ableitungsfunktion (Aufgabe 3.4)

$$f \colon y = \sqrt{x}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \lim_{h \to 0} \frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h}$$

$$= \lim_{h \to 0} \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

Ableitungsregeln (Aufgabe 4.15) neu

(a)
$$f(x) = 2x^3 - \frac{1}{2}x^2 + x - 5 \implies f'(x) = 6x^2 - x + 1$$

(b)
$$f(x) = 3\sin(x)$$
 \Rightarrow $f'(x) = 3\cos(x)$

(c)
$$f(x) = \sin(3x)$$
 \Rightarrow $f(x) = 3\cos(3x)$

(d)
$$f(x) = e^{-x}$$
 \Rightarrow $f'(x) = -e^{-x}$
$$f''(x) = e^{-x}$$

$$\dots = \dots$$

$$f^{(5)} = -e^{-x}$$

(e)
$$f(x) = x \cdot \ln x \implies f'(x) = 1 \cdot \ln x + x \cdot \frac{1}{x} = \ln(x) + 1$$

(f)
$$f(x) = \frac{x-1}{x+1}$$
 \Rightarrow $f'(x) = \frac{1 \cdot (x+1) - (x-1) \cdot 1}{(x+1)^2}$
= $\frac{2}{(x+1)^2}$

Monotonie (Aufgabe 5.6)

$$f(x) = \begin{cases} 5 - x^2 & \text{für } x \le 2\\ x - 1 & \text{für } x > 2 \end{cases}$$

(a)
$$f(2) = 5 - 2^2 = 5 - 4 = 1$$

(b)
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x - 1) = 1$$

Da $5-x^2$ als Differenz von stetigen Funktionen wieder stetig ist, genügt es, den rechtseitigen Grenzwert zu untersuchen.

(a) und (b) stimmen überein \Rightarrow f ist an der Stelle $x_0 = 2$ stetig.

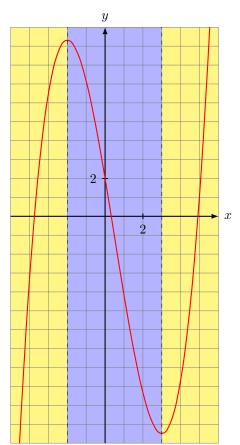
Stetigkeit (Aufgabe 6.5)

$$f \colon y = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 6x + 2$$

$$f'(x) = x^2 - x - 6 = (x+2)(x-3)$$

 $x_1 = -2$ und x = 3 sind Stellen mit horizontaler Tangente.

	$\left -\infty < x < -2 \right $	-2 < x < 3	$3 < x < \infty$
(x+2)	_	+	+
(x - 3)	_		+
f'(x)	+	_	+
	7	¥	7



Symmetrie (Aufgabe 7.13) neu

(a)
$$f(x) = x^3 - 4x$$

 $f(-x) = (-x)^3 - 4(-x) = -x^3 + 4x = -(x^3 - 4x) = -f(x) \ \forall \ x \in D_f$
 f ist ungerade also G_f symmetrisch zum Ursprung

(b)
$$f(x) = e^x$$

 $f(-x) = e^{-x} \neq e^x = f(x)$ und $f(-x) = e^{-x} \neq -e^x = -f(x)$
 f ist weder gerade noch ungerade; also keine uns bekannte Symmetrie

(c)
$$f(x) = \sqrt{x^2}$$

 $f(-x) = \sqrt{(-x)^2} = \sqrt{x^2} = f(x) \ \forall \ x \in D_f$
 f ist gerade; also ist G_f symmetrisch zur y -Achse

(d)
$$f(x) = \sin(x)$$
 [Graph oder Taylorreihe kennen!]
$$f(-x) = \sin(-x) = -\sin(x) = -f(x) \,\,\forall\,\, x \in D_f$$
 f ist ungerade; also ist G_f symmetrisch zum Ursprung

(e)
$$f(x) = \frac{x^4 + x^2 + 5}{x^3 - x}$$

Die Funktion im Zähler ist gerade und die im Nenner ungerade.

 \Rightarrow Quotient ungerade

fist ungerade; also ist ${\cal G}_f$ symmetrisch zum Ursprung

(f)
$$f(x) = \frac{x^2 - 3x}{x - 3} = \frac{x(x - 3)}{x - 3} = x$$

(Der die Symmetrie störende Term $\left(x-3\right)$ lässt sich kürzen.)

f ist ungerade; also ist G_f symmetrisch zum Ursprung

Asymptotisches Verhalten (Aufgabe 8.12) neu

- (a) Bestimme das asymptotische Verhalten der Funktion f für $x \to \infty$ und $x \to -\infty$.
 - $f(x) = x^2 x^3$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left(-x^3 \right) = -\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(-x^3 \right) = \infty$$

• $f(x) = e^x$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^x = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} e^x = 0$$

• $f(x) = \cos\left(\frac{1}{x}\right)$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \cos\left(\frac{1}{x}\right) = \cos(0) = 1$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \cos\left(\frac{1}{x}\right) = \cos(0) = 1$$

(b) Bestimme die Gleichung der Asymptote der Funktion $f: y = \frac{x^2 - 4x + 5}{x - 1}$.

Polynomdivision:
$$(x^2 - 4x - 5) : (x - 1) = x - 3 - \frac{8}{x - 1}$$

[Lösungsweg für die Polynomdivision: in der Theorie nachschauen]

Gleichung der Asymptote: $g \colon y = x - 3$ da $\frac{2}{x - 1} \to 0$ für $|x| \to \infty$

Nullstellen (Aufgabe 9.14) neu

Bestimme Ordinatenabschnitt und Nullstellen der Funktion f

(a)
$$f(x) = ax + b$$
 $(a, b \in \mathbb{R})$

Ordinatenabschnitt: f(0) = b

Nullstelle(n): $ax + b = 0 \implies x = -b/a$

(b)
$$f(x) = x^2 - x + 2$$

Ordinatenabschnitt: f(0) = 2

Nullstelle(n): $0 = x^2 - x + 2 = (x+1)(x-2) \implies x_1 = -1, x_2 = 2$

(c)
$$f(x) = \sqrt{x^2 - 9}$$

Ordindatenabschnitt $f(0) = \sqrt{-9}$ nicht definiert

Nullstelle(n): $0 = \sqrt{x^2 - 9} = \sqrt{(x - 3)(x + 3)} \implies x_{1,2} = \pm 3$

(d)
$$f(x) = \ln(7 - 3x)$$

Ordinatenabschnitt: $f(0) = \ln(7)$

Nullstelle(n): $\ln(7-3x) = 0 \implies e^{\ln(7-3x)} = e^0 \implies 7-3x = 1 \implies x = 2$

(e)
$$f(x) = \frac{x^2 - 7x + 12}{x - 3} = \frac{(x - 3)(x - 4)}{(x - 3)}$$
 (nur für $x \neq 3$ definiert)

Ordinatenabschnitt: $f(0) = \frac{12}{-3} = -4$

Nullstelle(n): x = 4

(f)
$$f(x) = e^x$$

Ordinatenabschnitt: $f(0) = e^0 = 1$

Nullstelle(n): keine [skizziere den Graph von $y = e^x$]

(g)
$$f(x) = \sin(x)$$

Ordinatenabschnitt: $f(0) = \sin(0) = 0$

Nullstelle(n): $\{x + k \cdot \pi \mid k \in \mathbb{Z}\}$ [skizziere den Graphen von $y = \sin(x)$]

(h)
$$f(x) = x^3 - 5x^2 + 7x - 3$$
 (alle Nullstellen sind ganzzahlig)

Ordinatenabschnitt: f(0) = -3

$$\Rightarrow x_1 = 3, x_2 = x_3 = 1$$

Taylorreihen (Aufgabe 10.5)

$$f(x) = \ln(x); x_0 = 1$$

$$f(x) = \ln(x) \implies f(1) = 0$$

$$f'(x) = 1/x = x^{-1} \implies f'(1) = 1^{-1} = 1$$

$$f''(x) = -x^{-2} \implies f''(1) = -1^{-2} = -1$$

$$T_2(x) = \frac{f(1)}{0!} + \frac{f'(1)}{1!}(x - 1) + \frac{f''(1)}{2!}(x - 1)^2$$

$$= 0 + 1 \cdot (x - 1) - \frac{1}{2} \cdot (x - 1)^2$$

$$= x - 1 - \frac{1}{2}(x^2 - 2x + 1)$$

$$= x - 1 - \frac{1}{2}x^2 + x - \frac{1}{2}$$

$$= -\frac{1}{2}x^2 + 2x - \frac{3}{2}$$

Extrempunkte (Aufgabe 11.3)

$$f(x) = x^{3} + ax^{2} + 7x - 3$$

$$f'(x) = 3x^{2} + 2ax + 7$$

$$f''(x) = 6x + 2a$$

$$f'(1) = 0$$

$$3 \cdot 1^{2} + 2a \cdot 1 + 7 = 0$$

$$10 + 2a = 0$$

$$a = -5$$

$$f''(x) = 6x + 2 \cdot (-5) = 6x - 30$$

$$f''(1) = 6 \cdot 1 - 30 = -24 < 0 \implies \text{HoP}(1, 0)$$

Wendepunkte (Aufgabe 12.6)

$$f(x) = \frac{1}{4}x^4 - x^3 + 2$$
Ableitungen: $f'(x) = x^3 - 3x^2$

$$f''(x) = 3x^2 - 6x$$

$$f'''(x) = 6x - 6$$

Wendepunkte:

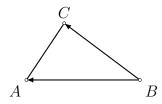
Kandidate(n):
$$f''(x) = 3x^2 - 6x = 3x(x - 2) = 0$$

 $x_1 = 0$
 $x_2 = 2$

Test:
$$f'''(0) = -6 \neq 0 \implies \text{WeP}_1(0, 2)$$

 $f'''(2) = 6 \neq 0 \implies \text{WeP}_2(2, -2)$

Skalarprodukt (Aufgabe 13.3)



 $A(9,4,{\color{red}6}),\,B(8,2,5)$ und C(12,5,10).

$$\overrightarrow{BA} = \overrightarrow{r}_A - \overrightarrow{r}_B = \begin{pmatrix} 9\\4\\6 \end{pmatrix} - \begin{pmatrix} 8\\2\\5 \end{pmatrix} = \begin{pmatrix} 1\\2\\1 \end{pmatrix}$$

$$\overrightarrow{BC} = \overrightarrow{r}_C - \overrightarrow{r}_B = \begin{pmatrix} 12\\5\\10 \end{pmatrix} - \begin{pmatrix} 8\\2\\5 \end{pmatrix} = \begin{pmatrix} 4\\3\\5 \end{pmatrix}$$

$$\varphi = \arccos \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{\left| \overrightarrow{BA} \right| \cdot \left| \overrightarrow{BC} \right|}$$

$$=\arccos\frac{4+6+5}{\sqrt{1+4+1}\cdot\sqrt{16+9+25}}=\arccos\frac{15}{\sqrt{6}\cdot\sqrt{50}}=30^{\circ}$$

Skalarprodukt (Aufgabe 13.6)

$$d_1=$$
 "so was ist das da"
$$d_2=$$
 "das ist so nicht"
$$d_3=$$
 "da ist was nicht so"

Wort	d_1	d_2	d_3	3 - area 67
so	1	1	1	$\sphericalangle(d_1, d_2) = \arccos\frac{3}{\sqrt{5 \cdot 4}} = \arccos 0.67$
was ist das	1	0	1	
ist	1	1	1	$\sphericalangle(d_1, d_3) = \arccos\frac{4}{\sqrt{5 \cdot 5}} = \arccos 0.8$
das	1	1	0	•
da	1	$\perp 0$	1	3 - arcses 0.67
nicht	0	1	1	$\triangleleft(d_2, d_3) = \arccos\frac{3}{\sqrt{4 \cdot 5}} = \arccos 0.67$

Da die Cosinusfunktion im Intervall $[0,90^{\circ}]$ monoton fällt, ist der Winkel umso kleiner, je grösser das Argument von arccos ist.

Somit haben die Dokument
e d_1 und d_3 die kleinste Dokument
distanz.

Das Vektorprodukt (Aufgabe 14.6) neu

$$\vec{n} = \vec{a} \times \vec{b} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} -2 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \cdot 2 - 1 \cdot 3 \\ 1 \cdot (-2) - 0 \cdot 2 \\ 0 \cdot 3 - 3 \cdot (-2) \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix}$$

steht senkrecht auf \vec{a} und \vec{b}

$$\left| \vec{n} \right| = \sqrt{9 + 4 + 36} = \sqrt{49} = 7$$

$$\vec{n}_1 = 3 \cdot \vec{n} = \begin{pmatrix} 9 \\ -6 \\ 18 \end{pmatrix}$$

$$\vec{n}_2 = -3 \cdot \vec{n} = \begin{pmatrix} -9\\6\\-18 \end{pmatrix}$$

Deskriptive Statistik (Aufgabe 15.1)

Werte der Strichprobe: $x_1 = 5$, $x_2 = 2$, $x_3 = 3$, $x_4 = 3$, $x_5 = 7$:

Ordnungsstatistik: 2, 3, 3, 5, 7 empirischer Mittelwert: $\overline{x} = 4$

empirische Varianz: $s^2=4$; empirische Standardabweichung: s=2

Minimum: $x_{\min} = 2$

1. Quartil: $q_1 = 2.5$

Median: $\tilde{x} = q_2 = 3$

3. Quartil: $q_3 = 6$

Maximum: $x_{\text{max}} = 7$

Interquartilabstand: IQR = 3.5

Spannweite: R = 5

Modus: 3

Algorithmus von Gale-Shapley (Aufgabe 16.2)

	1. Priorität	2. Priorität	3. Priorität
Ann	Carl	Ben	Alex
Betsy	Carl	Ben	Alex
Cora	Ben	Carl	Alex

	1. Priorität	2. Priorität	3. Priorität
Alex	Betsy	Ann	Cora
Ben	Betsy	Ann	Cora
Carl	Betsy	Ann	Cora

Queue: Ann Betsy Cora Ann Cora

Attivi/H/Claft Betsy + Carl Claft/A/H/Bend Ann + Ben Cora + Alex