Differenzialrechnung

Theorie (I) (L)

Inhaltsverzeichnis

1	Gre	nzwerte von Folgen	4		
2	Gre	nzwerte von Funktionen	10		
	2.1	Stetigkeit	15		
3	Der	Differenzialquotient	16		
4	Die	Ableitungsfunktion	21		
	4.1	Elementare Funktionen	21		
	4.2	Der Differenzialoperator	27		
	4.3	Zusammenfassung	27		
5	Abl	eitungsregeln	28		
	5.1	Summenregel	28		
	5.2	konstante Faktoren	28		
	5.3	Produktregel	29		
	5.4	Ableitung des Kehrwerts	30		
	5.5	Quotientenregel	30		
	5.6	Kettenregel	31		
	5.7	Die Ableitung der Umkehrfunktion	33		
	5.8	Höhere Ableitungen	34		
	5.9	Implizite Differentiation (PAM)	35		
6	Stetigkeit und Differenzierbarkeit				
	6.1	Definitionslücken	38		
	6.2	Stetigkeit	39		
	6.3	Differenzierbarkeit	41		
7	Mo	notonie	42		
8	Syn	nmetrie	46		
9	Asy	mptotisches Verhalten	47		
	9.1	Ganzrationale Funktionen (Polynome)	47		
	9.2	Gebrochenrationale Funktionen	48		
	9.3	Exponentialfunktionen	49		
	9.4	Logarithmusfunktionen	49		
	9.5	Trigonometrische Funktionen	49		

10) Nullstellen	51
	10.1 Nullstellen ganzrationaler Funktionen	51
	10.2 Nullstellen gebrochen rationaler Funktionen	53
	10.3 Nullstellen von Exponential- und Logarithmusfunktionen	53
	10.4 Nullstellen trigonometrischer Funktionen	54
	10.5 Das Bisektionsverfahren	55

1 Grenzwerte von Folgen

Folgen, Monotonie und Beschränktheit

Eine reelle Zahlenfolge (a_n) ist eine Funktion, die jeder natürlichen Zahl $n \in \{1, 2, 3, ...\}$ eine reelle Zahl $a(n) = a_n$ zuordnet.

Eine Folge (a_n) ist monoton wachsend, wenn für alle $n \in \mathbb{N}$ gilt: $a_{n+1} \geq a_n$.

Eine Folge (a_n) ist streng monoton wachsend, wenn für alle $n \in \mathbb{N}$ gilt: $a_{n+1} > a_n$.

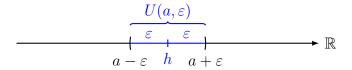
Analog werden (streng) monoton fallende Folgen definiert.

Eine Folge (a_n) ist beschränkt, wenn es eine positive reelle Zahl K gibt, so dass für alle $n \in \mathbb{N}$ gilt: $|a_n| \leq K_n$.

Der Umgebungsbegriff

Ist $a \in \mathbb{R}$ und $\varepsilon > 0$, dann ist eine ε -Umgebung $U(a, \varepsilon)$ von a die Menge der Zahlen

$$U(a,\varepsilon) = \{ x \in \mathbb{R} \colon |x - a| < \varepsilon \}$$

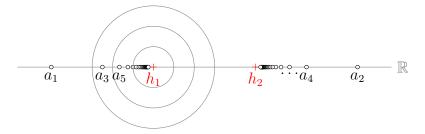


Häufungspunkte (informell)

Eine reelle Zahl h ist ein $H\ddot{a}ufungspunkt$ der Zahlenfolge (a_n) , wenn für jedes noch so kleine $\varepsilon > 0$ unendlich viele Folgeglieder in der Umgebung $U(h, \varepsilon)$ liegen.

Fasst man eine Folge

Visualisierungsversuch von Häufungspunkten



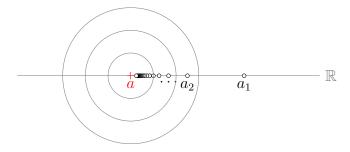
Bei einem Häufungspunkt h genügt es, dass in jeder noch so kleinen Umgebung von h unendlich viele Folgeglieder liegen. Das verbietet nicht, dass auch ausserhalb dieser Umgebungen unendlich viele Folgeglieder (möglicherweise mit weiteren Häufungspunkten) liegen.

Grenzwerte (informell)

Eine reelle Zahl a ist ein *Grenzwert* der Zahlenfolge (a_n) , wenn für jedes noch so kleine $\varepsilon > 0$ alle bis auf endlich viele Folgeglieder in der Umgebung $U(a, \varepsilon)$ liegen.

Beachte: Jeder Grenzwert ist auch ein Häufungspunkt aber nicht umgekehrt.

Visualisierungsversuch eines Grenzwerts



Konvergenz und Divergenz

Eine Folge mit einem Grenzwert wird konvergent genannt und man schreibt

$$a = \lim_{n \to \infty} a_n$$

Eine Folge (a_n) , die nicht konvergent ist, wird divergent genannt.

Nullfolge

Eine Folge (a_n) mit dem Grenzwert a=0 heisst Nullfolge.

uneigentliche Konvergenz

Erweitert man die reelle Zahlengerade um die zwei unendlich entfernten "Punkte" $-\infty$ und ∞ , so sagt man, dass dass eine Folge (a_n) uneigentlich gegen $+\infty$ konvergiert, wenn für jedes noch so grosse K > 0 alle bis auf endlich viele Folgeglieder grösser als K sind.

Eine Folge (a_n) konvergiert uneigentlich gegen $-\infty$, wenn für jedes noch so kleine K < 0 alle bis auf endlich viele Folgeglieder kleiner als K sind.

Uneigentlich konvergente Folgen werden auch bestimmt diverent genannt. Folgen die weder konvergent noch uneigentlich konvergent sind, heissen dann unbestimmt divergent.

Beispiel 1.1

$$a_n = \frac{1}{n}$$
 $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots \rightarrow 0$

monoton fallend, nach unten beschränkt, ein Häufungspunkt

 a_n ist konvergent

$$a_n = n!$$

$$1, 2, 6, 24, 120, \dots \rightarrow \infty$$

monoton wachsend, unbeschränkt, kein Häufungspunkt (uneigentlicher HP)

 (a_n) ist divergent (oder: uneigentlich konvergent)

Beispiel 1.3

$$a_n = \frac{2n}{n+1}$$

$$1, \frac{4}{3}, \frac{6}{4}, \frac{8}{5}, \frac{10}{6}, \dots \rightarrow 2$$

monoton wachsend, nach oben beschränkt, ein Häufungspunkt

 (a_n) ist konvergent

Beispiel 1.4

$$a_n = (-2)^n$$

$$-2, 4, -8, 16, -32, \dots \rightarrow \{-\infty, +\infty\}$$

nicht monoton, unbeschränkt, kein Häufungspunkt (zwei uneigentliche HP)

 (a_n) ist divergent (auch nicht uneigentlich konvergent)

Beispiel 1.5

$$a_n = (-1)^n \cdot \frac{n}{n+1}$$

$$-\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, \frac{4}{5}, -\frac{5}{6}, \dots \rightarrow \{-1, +1\}$$

beschränkt, nicht monoton, zwei Häufungspunkte

 (a_n) ist divergent

Formale Definition der Konvergenz (PAM)

Eine Folge (a_n) ist konvergent mit dem Grenzwert a, wenn es für jede (noch so kleine) Zahl $\varepsilon > 0$ einen Index $n_{\varepsilon} \in \mathbb{N}$ gibt, so dass die Ungleichung

$$|a - a_n| < \varepsilon$$

für alle $n \geq n_{\varepsilon}$ erfüllt ist.

Das ε in n_{ε} zeigt an, dass der Index n_{ε} in der Regel von ε abhängig ist.

Beispiel 1.6

Beweis der Konvergenz von Beispiel 1.1: $a_n = 1/n$

vermuteter Grenzwert: a = 0

Sei $\varepsilon > 0$. Jedes $n_{\varepsilon} \in \mathbb{N}$ mit $n_{\varepsilon} > 1/\varepsilon$ hat die geforderte Eigenschaft, denn:

$$|a - a_n| = \left| 0 - \frac{1}{n} \right| = \left| \frac{1}{n} \right| = \frac{1}{n} < \frac{1}{n_{\varepsilon}} < \frac{1}{1/\varepsilon} = \varepsilon \quad \Box$$

Beispiel 1.7

Ist die Folge $a_n = 1/2^n$ konvergent?

vermuteter Grenzwert: a = 0

Sei $\varepsilon > 0$

Wähle n_{ε} so, dass $n_{\varepsilon} > \log_2(1/\varepsilon)$

$$|a - a_n| = \left| 0 - \frac{1}{2^n} \right| = \frac{1}{2^n} < \frac{1}{2^{n_{\varepsilon}}} < \frac{1}{2^{\log_2(1/\varepsilon)}} = \frac{1}{1/\varepsilon} = \varepsilon \quad \forall n > n_{\varepsilon}$$

Reihen

Zur Erinnerung: Ist (a_n) eine beliebige Folge, so ist die durch

$$s_n = \sum_{i=1}^n a_n$$

definierte Folge (s_n) die Teilsummenfolge oder Reihe von (a_n) .

$$a_n = 3 + 2 \cdot n$$

$$5, 7, 9, 11, \ldots \rightarrow \infty$$

Die Folge (a_n) ist divergent

$$s_n: 5, 12, 21, 32, \ldots \to \infty$$

Die Reihe (s_n) ist divergent.

Beispiel 1.9

$$a_n = \left(\frac{1}{2}\right)^n$$

Beispiel 1.7: Folge (a_n) konvergiert gegen 0.

$$s_n: \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \dots \xrightarrow{?} 1$$

Summenformel der GF: $a_1 = \frac{1}{2}$, $q = \frac{1}{2}$

$$s = \lim_{n \to \infty} s_n = \frac{1/2}{1 - 1/2} = 1$$

GR sind konvergent, wenn |q| < 1

Beispiel 1.10

$$a_n = \frac{1}{n}$$

Beispiel 1.1: (a_n) ist eine Nullfolge

$$s_n = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$t_n = \frac{1}{1} + \frac{1}{2} + \underbrace{\frac{1}{4} + \frac{1}{4}}_{1/2} + \underbrace{\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}}_{1/2} + \underbrace{\frac{1}{16} + \dots + \frac{1}{16}}_{1/2} + \dots + \frac{1}{n}$$

8

 (t_n) ist offensichtlich divergent $(1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots)$.

 $\forall n \in \mathbb{N}: t_n \leq s_n \implies (s_n) \text{ ist auch divergent}$

 (s_n) wird die harmonische Reihe genannt.

Grenzwertsätze

Sind (a_n) und (b_n) konvergente reelle Zahlenfolgen mit den Grenzwerten a und b, so kann die Grenzwertbildung mit den rationalen Operationen $(+, -, \times, \div)$ vertauscht werden. Genauer:

•
$$\lim_{n \to \infty} (a_n \pm b_n) = (\lim_{n \to \infty} a_n) \pm (\lim_{n \to \infty} b_n)$$

•
$$\lim_{n \to \infty} (a_n \cdot b_n) = (\lim_{n \to \infty} a_n) \cdot (\lim_{n \to \infty} b_n)$$

•
$$\lim_{n \to \infty} (a_n : b_n) = (\lim_{n \to \infty} a_n) : (\lim_{n \to \infty} b_n)$$
 wenn $\lim_{n \to \infty} b_n \neq 0$

Zwei nützliche Konvergenzkriterien

- \bullet Jede monoton wachsende und nach oben beschränkte Folge (a_n) ist konvergent.
- Jede monoton fallende und nach unten beschränkte Folge (a_n) ist konvergent.

Aufgaben (Rhyn ab Seite 9)

84a-i	89 (PAM)	96abde	107
85a-c	90a-m	97a-d	109
86	91a	100abc	
87a-f	92 (nur Formel)	103	
	95ab (PAM)	106	

2 Grenzwerte von Funktionen

Gegeben ist eine Funktion f und eine Stelle x_0

Wir untersuchen, wie sich die Funktionswerte $f(x_n) = y_n$ verhalten, wenn x_n gegen x_0 strebt.

10

Beispiel 2.1

$$f(x) = x^2 - 2x + 4$$
 und $x_0 = 3$

x_n	$f(x_n)$
2.9	6.61
2.99	6.9601
2.999	6.996001
2.9999	6.99960001
\downarrow	\
3-	7

x_n	$f(x_n)$
3.1	7.41
3.01	7.0401
3.001	7.004001
3.0001	7.00040001
\downarrow	\downarrow
3+	7

Grenzwert $\lim_{x\to 3} f(x) = 7$ existiert.

Funktionswert $f(x) = 3^2 - 2 \cdot 3 + 4 = 7$ existiert

Beispiel 2.2

$$f(x) = \frac{x^2 - 1}{x - 1}$$
 und $x_0 = 1$

x_n	$f(x_n)$
0.9	1.9
0.99	1.99
0.999	1.999
0.9999	1.9999
\downarrow	\
1-	2

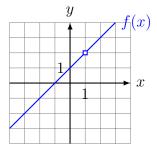
x_n	$f(x_n)$
1.1	2.1
1.01	2.01
1.001	2.001
1.0001	2.0001
↓	\downarrow
1+	2

 $Grenzwert \lim_{x \to 1} f(x) = 2$ existiert

Funktionswert $f(1) = \frac{1^2 - 1}{1 - 1} = \frac{0}{0}$ existiert nicht!

Graph von f

Für
$$x \neq 1$$
 gilt: $f(x) = \frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1} = x + 1 = g(x)$



Die Ersatzfunktion g ist nur an der Stelle x=1 unbrauchbar.

Definition

Eine Funktion f besitzt an der Stelle x_0 den Grenzwert g, wenn für jede Folge (x_n) mit $x_n \to x_0$ die Folge (y_n) der Funktionswerte $y_n = f(x_n)$ gegen g konvergiert.

Beispiel 2.3

$$f(x) = \frac{x^3 - 4x^2 + x + 6}{x + 1}$$

$$f(-1) = \frac{-1 - 4 - 1 + 6}{0} = \frac{0}{0}$$
 (kürzen möglich?)

Polynomdivision: $(x^3 - 4x^2 + x + 6) : (x + 1) = (x^2 - 5x + 6)$

$$f(x) = \frac{(x+1)(x^2 - 5x + 6)}{(x+1)} = x^2 - 5x + 6 \text{ für } x \neq -1$$

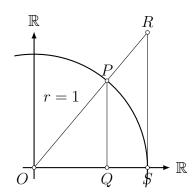
$$\lim_{x \to -1} f(x) = (-1)^2 - 5(-1) + 6 = 1 + 5 + 6 = 12$$

$$\lim_{x \to 0} \frac{\sin x}{x} = ?$$

x	$\sin(x)/x$	x	$\sin(x)/x$
0.1	0.998334	-0.1	0.998334
0.01	0.999983	-0.01	0.999983
0.001	0.999999	-0.001	0.999999
\downarrow	\	\downarrow	↓
0+	1	0-	1

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Formaler Nachweis (PAM)



$$\frac{1}{2}\cos x \cdot \sin x < \frac{1}{2} \cdot 1 \cdot x < \frac{1}{2} \cdot 1 \cdot \tan x$$

$$\cos x \cdot \sin x < x < \frac{\sin x}{\cos x}$$

$$\cos x < \frac{x}{\sin x} < \frac{1}{\cos x}$$

$$\frac{1}{\cos x} > \frac{\sin x}{x} > \cos x$$

$$x \to 0$$
:

$$1 \ge \lim_{x \to 0} \frac{\sin x}{x} \ge 1 \quad \Rightarrow \quad \lim_{x \to 0} \frac{\sin x}{x} = 1$$

Beispiel 2.5 (PAM)

$$f(x) = \frac{\cos x + 1}{x - \pi}; x_0 = \pi$$

Funktionswert:
$$f(\pi) = \frac{\cos \pi + 1}{\pi - \pi} = \frac{-1 + 1}{0} = \frac{0}{0}$$

Kürze mit Hilfe der Produktformel (Formelsammlung S. 99)

$$\frac{\cos x - \cos \pi}{x - \pi} = \frac{-2 \cdot \sin([x + \pi]/2) \cdot \sin([x - \pi]/2)}{x - \pi}$$

$$= \frac{-\sin([x + \pi]/2) \cdot \sin([x - \pi]/2)}{[x - \pi]/2}$$

$$= -\sin([x + \pi]/2) \cdot \frac{\sin([x - \pi]/2)}{[x - \pi]/2}$$

Substitution: $\frac{x-\pi}{2} = a \quad \Leftrightarrow \quad x = 2a + \pi$

$$x \to \pi \quad \Leftrightarrow \quad a \to 0$$

$$\lim_{x \to \pi} \frac{\cos x - \cos \pi}{x - \pi} = -\lim_{a \to 0} \sin(2a + \pi) \frac{\sin a}{a}$$
$$= -\left[\sin(\pi) \cdot 1\right] \quad \text{(Beispiel 2.4)}$$
$$= 0$$

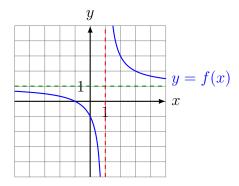
Beispiel 2.6

$$f(x) = \frac{x+1}{x-1}, x_0 = 1 \implies f(1) = \frac{2}{0}$$
?

$$\lim_{x \to 1^{-}} f(x) = -\infty$$
 $\lim_{x \to 1^{+}} f(x) = +\infty$

Grenzwert existiert nicht

Graph von f



f hat an der Stelle x = 1 einen Pol.

Asymptotisches Verhalten

Wie verhält sich f(x) für grosse |x|?

$$\lim_{x \to +\infty} \frac{x+1}{x-1} = \lim_{x \to +\infty} \frac{(x+1)/x}{(x-1)/x} = \lim_{x \to +\infty} \frac{1+1/x}{1-1/x} = \frac{1+0}{1-0} = 1$$

analog:
$$\lim_{x \to -\infty} \frac{x+1}{x-1} = \dots = 1$$

y=1 ist die Gleichung der horizontalen Asymptote.

Beispiel 2.7

$$f(x) = \frac{x^2 + 1}{x + 1}, x_0 = -1 \implies f(-1) = \frac{2}{0}$$
?

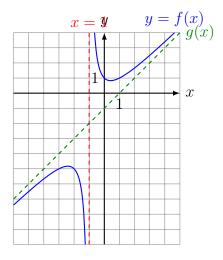
$$\frac{x^2+1}{x+1} = x - 1 + \frac{2}{x+1}$$

$$\lim_{x \to -1^{-}} f(x) = -\infty \text{ und } \lim_{x \to -1^{+}} f(x) = +\infty$$

Für grosse |x| gilt $f(x) \approx x - 1$

g=x-1ist eine Ersatzfunktion für f

Graph von f



2.1 Stetigkeit

Eine Funktion f ist an der Stelle x_0 stetig, wenn gilt:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

wobei alle Ausdrücke in der Gleichung definiert sein müssen.

Aufgaben (Rhyn ab S. 15)

13a-i 16a-h 14a-i 17a-c

15a-f

Hinweise: Das Buch bezeichnet mit [x] die "floor"-Funktion $\lfloor x \rfloor$, die jede reelle Zahl x auf die nächsttiefere ganze Zahl a abrundet; also $[7.7] = \lfloor 7.7 \rfloor = 7$, $[5] = \lfloor 5 \rfloor = 5$, $[-1.414] = \lfloor -1.414 \rfloor = -2$ und $[-8] = \lfloor -8 \rfloor = -8$

Die Signum-Funktion (Vorzeichenfunktion) ist wie folgt definiert:

$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{falls } x > 0 \\ 0 & \text{falls } x = 0 \\ -1 & \text{falls } x < 0 \end{cases}$$

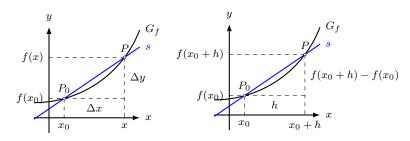
3 Der Differenzialquotient

Das Tangentenproblem

Gegeben: eine geeignete Funktion f und eine Stelle x_0

Gesucht: Steigung der Tangente von G_f an der Stelle x_0 .

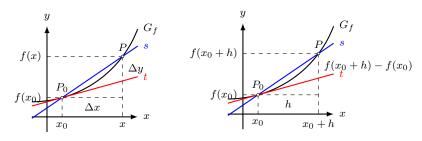
Differenzenquotient



Steigung der Sekante durch P_0 und P (in zwei Darstellungen):

$$m_s = \frac{\Delta y}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x_0 + h) - f(x_0)}{h}$$
 (Differenzenquotient)

Der Differenzialquotient



Existiert der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

so wird dieser *Differenzialquotient* oder *Ableitung* der Funktion f an der Stelle x_0 genannt und mit $f'(x_0)$ abgekürzt.

16

Geometrische Deutung

Der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

ist gleich der Steigung der Tangente an den Graphen von f an der Stelle x_0 .

Aus praktischen Gründen ersetzen wir in der obigen Formel $x = x_0 + h$ und schreiben

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Beispiel 3.1

Gesucht: Gleichung der Tangente und Normale von $f(x) = x^2$ an der Stelle $x_0 = 1$.

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{(1+h)^2 - 1^2}{h}$$
$$= \lim_{h \to 0} \frac{1 + 2h + h^2 - 1}{h} = \lim_{h \to 0} \frac{h(2+h)}{h}$$
$$= \lim_{h \to 0} (2+h) = 2$$

Bei $x_0 = 1$ hat G_f eine Tangente mit der Steigung m = 2.

Gleichung der Tangente: $t: y = m_t x + q$

Funktionswert: y = f(1) = 1

Steigung: $m_t = 2$

$$P(1,1) \in t$$
: $1 = 2 \cdot 1 + q \implies q = -1$

$$\Rightarrow t: y = 2x - 1$$

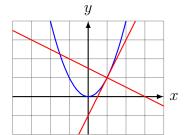
Eine Normale ist eine Gerade, die senkrecht zu einer anderen Gerade steht. Hier steht die Normale senkrecht zur Tangente und geht ebenfalls durch den Kurvenpunkt $(x_0, f(x_0))$.

Gleichung der Normalen: $n: y = m_n x + q$

Steigung:
$$m_n = -\frac{1}{m_t} = -\frac{1}{2}$$

$$P(1,1) \in n: 1 = -\frac{1}{2} \cdot 1 + q \implies q = \frac{3}{2}$$

$$\Rightarrow n \colon y = -\frac{1}{2}x + \frac{3}{2}$$



Gesucht: Gleichung der Tangente und Normale von f(x) = 1/x an der Stelle $x_0 = 2$.

$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{1}{h} \left[\frac{1}{2+h} - \frac{1}{2} \right]$$
$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{2 \cdot 1}{2(2+h)} - \frac{1 \cdot (2+h)}{2(2+h)} \right] = \lim_{h \to 0} \frac{1}{h} \left[\frac{2-2-h}{2(2+h)} \right]$$
$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{-h}{2(2+h)} \right] = \lim_{h \to 0} \frac{-1}{2(2+h)} = -\frac{1}{4}$$

Gleichung der Tangente: $t: y = m_t x + q$

Funktionswert: $y = f(2) = \frac{1}{2}$

Steigung: $m_t = -\frac{1}{4}$

$$P\left(2,\frac{1}{2}\right) \in t : \frac{1}{2} = -\frac{1}{4} \cdot 2 + q \quad \Rightarrow \quad q = 1$$

$$\Rightarrow t: y = -\frac{1}{4}x + 1$$

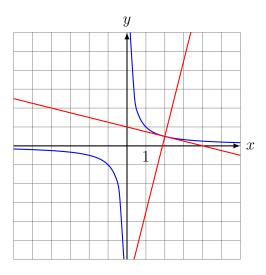
Gleichung der Normalen: $n: y = m_n x + q$

Steigung der Normalen: $m_n = -\frac{1}{m_t} = 4$

$$P\left(2, \frac{1}{2}\right) \in n: \frac{1}{2} = 4 \cdot 2 + q \implies q = -7.5$$

$$\Rightarrow n \colon y = 4x - 7.5$$

Graph:



Gesucht: Gleichung der Tangente und Normale von $f(x) = \sqrt{x}$ an der Stelle $x_0 = 1$.

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{\sqrt{1+h} - 1}{h}$$

$$= \lim_{h \to 0} \frac{\left(\sqrt{1+h} - 1\right)\left(\sqrt{1+h} + 1\right)}{h\left(\sqrt{1+h} + 1\right)}$$

$$= \lim_{h \to 0} \frac{1+h-1}{h\left(\sqrt{1+h} + 1\right)} = \lim_{h \to 0} \frac{1}{\sqrt{1+h} + 1}$$

$$= \frac{1}{2}$$

Gleichung der Tangente: $t: y = m_t x + q$

Funktionswert: $y_0 = f(1) = \sqrt{1} = 1$

Steigung: $m_t = \frac{1}{2}$

$$P(1,1) \in t: 1 = \frac{1}{2} \cdot 1 + q \implies q = \frac{1}{2}$$

$$\Rightarrow t \colon y = \frac{1}{2}x + \frac{1}{2}$$

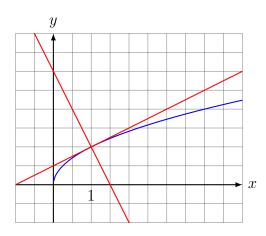
Gleichung der Normalen: $n: y = m_n x + q$

Steigung:
$$m_n = -\frac{1}{m_t} = -2$$

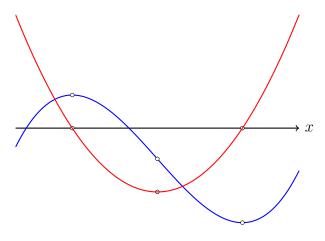
$$P(1,1) \in n: 1 = -2 \cdot 1 + q \implies q = 3$$

$$\Rightarrow n: y = -2x + 3$$

Graph:



Grafisches Differenzieren



Aufgaben (Rhyn ab Seite 18)

 $20\mathrm{a}\mathrm{-d}$ 23a–e (sowie die Gleichung der Normalen) 25a–f $26\mathrm{a}\mathrm{-d}$

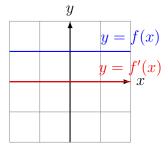
4 Die Ableitungsfunktion

4.1 Elementare Funktionen

Die konstante Funktion f(x) = c

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} 0 = 0$$

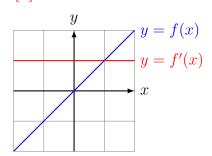
$$\left[c\right]' = 0$$



Die Identität f(x) = x

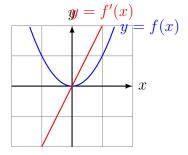
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{x+h-x}{h}$$
$$= \lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} 1 = 1$$

$$[x]' = 1$$



Die quadratische Funktion $f(x) = x^2$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$
$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h}$$
$$= \lim_{h \to 0} \frac{h(2x+h)}{h} = \lim_{h \to 0} (2x+h) = 2x$$



Die kubische Funktion $f(x) = x^3$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$

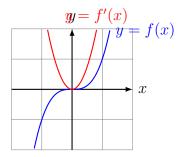
$$= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h}$$

$$= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}$$

$$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$$

$$= \lim_{h \to 0} (3x^2 + 3xh + h^2) = 3x^2$$

$$\left[x^3\right]' = 3x^2$$



Die quartische Funktion $f(x) = x^4$

Vermutung: $\left[x^4\right]' = 4x^3$

Die allgemeine Potenzfunktion $f(x) = x^n$

$$\left[x^n\right]' = n \cdot x^{n-1}$$

Beweis:

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = \lim_{h \to 0} \frac{1}{h} \left[(x+h)^n - x^n \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\binom{n}{0} x^n + \binom{n}{1} x^{n-1} h + \binom{n}{2} x^{n-2} h^2 + \dots + \binom{n}{n} h^n - x^n \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[n x^{n-1} h + \binom{n}{2} x^{n-2} h^2 + \dots + \binom{n}{n} h^n \right]$$

$$= \lim_{h \to 0} \left[n x^{n-1} + \binom{n}{2} x^{n-2} h + \dots + \binom{n}{n} h^{n-1} \right]$$

$$= n x^{n-1}$$

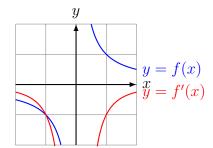
Die reziproke Funktion f(x) = 1/x

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{1}{h} \left[\frac{1}{x+h} - \frac{1}{x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{x}{x(x+h)} - \frac{x+h}{x(x+h)} \right] = \lim_{h \to 0} \frac{1}{h} \cdot \frac{x-x-h}{x(x+h)}$$

$$= \lim_{h \to 0} \frac{1}{h} \cdot \frac{-h}{x(x+h)} = \lim_{h \to 0} \frac{-1}{x(x+h)} = \frac{-1}{x^2}$$

$$\left[\frac{1}{x}\right]' = \frac{-1}{x^2}$$



Die Wurzelfunktion $f(x) = \sqrt{x}$

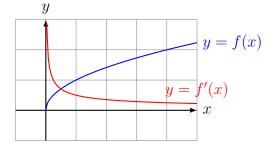
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \lim_{h \to 0} \frac{\left(\sqrt{x+h} - \sqrt{x}\right)\left(\sqrt{x+h} + \sqrt{x}\right)}{h\left(\sqrt{x+h} + \sqrt{x}\right)}$$

$$= \lim_{h \to 0} \frac{x+h-x}{h\left(\sqrt{x+h} + \sqrt{x}\right)}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

$$\left[\sqrt{x}\right]' = \frac{1}{2\sqrt{x}}$$



Verallgemeinerung

$$\left[x^{a}\right]' = a \cdot x^{a-1} \text{ (Potenzregel)}$$

Dadurch lassen sich (b)–(h) verallgemeinern:

•
$$[x]' = [x^1]' = 1 \cdot x^0 = 1 \cdot 1 = 1$$

•
$$[x^2]' = 2 \cdot x^1 = 2 \cdot x$$

$$\bullet \ \left[x^7\right]' = 7 \cdot x^6$$

•
$$[1/x]' = [x^{-1}]' = -1 \cdot x^{-2} = -1/x^2$$

•
$$\left[\sqrt{x}\right]' = \left[x^{\frac{1}{2}}\right]' = \frac{1}{2} \cdot x^{-\frac{1}{2}} = \frac{1}{2} \cdot \frac{1}{x^{\frac{1}{2}}} = 1/(2\sqrt{x})$$

Die Sinusfunktion $f(x) = \sin x$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

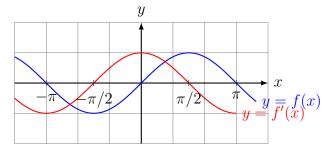
$$= \lim_{h \to 0} \frac{\sin x \cdot \cos h + \cos x \cdot \sin h - \sin x}{h} \quad (FTB S. 99)$$

$$= \lim_{h \to 0} \frac{\sin x \cdot (\cos h - 1)}{h} + \lim_{h \to 0} \frac{\cos x \cdot \sin h}{h} \quad (FTB S. 61)$$

$$= \sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h}$$

$$= \sin x \cdot 0 + \cos x \cdot 1 = \cos x \quad (FTB S. 62)$$

$$\left[\sin x\right]' = \cos x$$



Die Cosinusfunktion $f(x) = \cos x$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

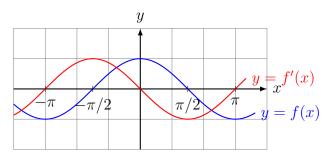
$$= \lim_{h \to 0} \frac{\cos x \cdot \cos h - \sin x \cdot \sin h - \cos x}{h} \quad (FTB S. 99)$$

$$= \lim_{h \to 0} \frac{\cos x(\cos h - 1)}{h} - \lim_{h \to 0} \frac{\sin x \cdot \sin h}{h} \quad (FTB S. 61)$$

$$= \cos x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} - \sin x \cdot \lim_{h \to 0} \frac{\sin h}{h} \quad (FTB S. 61)$$

$$= \cos x \cdot 0 - \sin x \cdot 1 = -\sin x \quad (FTB S. 62)$$

$$\left[\cos x\right]' = -\sin x$$

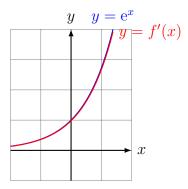


Die Exponentialfunktion $f(x) = e^x$

 $(e \approx 2.71828 \text{ Eulersche Zahl})$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$
$$= \lim_{h \to 0} \frac{e^x \cdot e^h - e^x}{h} = \lim_{h \to 0} \frac{e^x \left(e^h - 1\right)}{h}$$
$$= e^x \cdot \lim_{h \to 0} \frac{e^h - 1}{h} = e^x \cdot 1 = e^x \quad (FTB S. 62)$$

$$\left[e^x \right]' = e^x$$



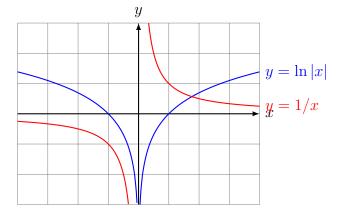
Die Logarithmusfunktion $f(x) = \ln x$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h}$$
$$= \lim_{h \to 0} \frac{\ln\left[(x+h)/x\right]}{h} = \lim_{h \to 0} \frac{\ln(1+h/x)}{h}$$

Substitution: $h = k \cdot x$, wobei $h \to 0 \Leftrightarrow k \to 0$

$$= \lim_{k \to 0} \frac{\ln(1+k)}{kx} = \frac{1}{x} \cdot \underbrace{\lim_{k \to 0} \frac{\ln(1+k)}{k}}_{1} = \frac{1}{x} \quad (FTB S. 62)$$

$$\left[\ln x\right]' = 1/x$$



Es gilt sogar: $\left[\ln|x|\right]' = 1/x$

4.2 Der Differenzialoperator

Ist eine Funktion f für jedes x aus ihrem Definitionsbereich differenzierbar, so wird durch f' eine neue Funktion definiert:

Funktion
$$x \to f(x)$$

Ableitungsfunktion $x \to f'(x)$

Diese Tabelle können wir auch so interpretieren, dass der Funktion f, eine Funktion f' zugeordnet wird. Diese "Meta-Funktion", welche einer Funktion ihre Ableitungsfunktion zuordnet, wird Differential operator genannt und so dargestellt:

$$\frac{\mathrm{d}}{\mathrm{d}x} \colon f \to f' \quad \text{oder} \quad \frac{\mathrm{d}}{\mathrm{d}x} f = f'$$

Beispiel:
$$\frac{\mathrm{d}}{\mathrm{d}x}\cos x = -\sin x$$

4.3 Zusammenfassung

f(x)	f'(x)
c (const.)	0
x	1
\sqrt{x}	$1/(2\sqrt{x}) (x > 0)$
1/x	$-1/x^2 (x \neq 0)$
$x^r \ (r \in \mathbb{R})$	$r \cdot x^{r-1}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
e^x	e^x
$\ln x $	1/x

Zusätzliche Ableitungsfunktionen erhalten wir aus den Ableitungsregeln.

5 Ableitungsregeln

Wie werden Summen, Produkte, Quotienten, und Verkettungen von Funktionen differenziert?

5.1 Summenregel

Sind die Funktionen f und g an der Stelle x differenzierbar, dann gilt:

$$[f(x) + g(x)]' = f'(x) + g'(x).$$

Beweis

$$[f(x) + g(x)]' = \lim_{h \to 0} \frac{[f(x+h) + g(x+h)] - [f(x) + g(x)]}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x) + g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= f'(x) + g'(x)$$

Beispiel 5.1

$$(x^5 + \sin x)' = (x^5)' + (\sin x)' = 5x^4 + \cos x$$

5.2 konstante Faktoren

Ist c eine reelle Zahl und die Funktion f an der Stelle x differenzierbar, dann gilt:

$$[c \cdot f(x)]' = c \cdot f'(x).$$

Beweis

$$[c \cdot f(x)]' = \lim_{h \to 0} \frac{c \cdot f(x+h) - c \cdot f(x)}{h}$$

$$= \lim_{h \to 0} \frac{c \cdot [f(x+h) - f(x)]}{h}$$

$$= c \cdot \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= c \cdot f'(x)$$

Beispiel 5.2

$$(5 \cdot x^3)' = 5 \cdot (x^3)' = 5 \cdot 3x^2 = 15x^2$$

$$(\log_a x)' = \left(\frac{\ln x}{\ln a}\right)' = \left(\frac{1}{\ln a} \cdot \ln x\right)' = \frac{1}{\ln a} \cdot (\ln x)' = \frac{1}{\ln a} \cdot \frac{1}{x}$$

5.3 Produktregel

Sind die Funktionen f und g an der Stelle x differenzierbar, dann gilt

$$[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x).$$

Beweis

$$\begin{split} & \left[f(x) \cdot g(x) \right]' = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} \\ & = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h} \\ & = \lim_{h \to 0} \frac{\left[f(x+h) - f(x) \right] \cdot g(x+h) + f(x) \cdot \left[g(x+h) - g(x) \right]}{h} \\ & = \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} \cdot g(x+h) \right] + \lim_{h \to 0} \left[f(x) \cdot \frac{g(x+h) - g(x)}{h} \right] \\ & = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \lim_{h \to 0} g(x+h) + f(x) \cdot \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \\ & = f'(x) \cdot g(x) + f(x) \cdot g'(x) \end{split}$$

Beispiel 5.4

$$(x^2 \cdot \cos x)' = (x^2)' \cdot \cos x + x^2 \cdot (\cos x)'$$
$$= 2x \cos x + x^2(-\sin x) = 2x \cos x - x^2 \sin x$$

Beispiel 5.5

clever:

$$(x^3 \cdot x^5)' = (x^8) = 8x^7$$

naiv aber falsch:

$$(x^3 \cdot x^5)' \neq (x^3)' \cdot (x^5)' = 3x^2 \cdot 5x^4 = 15x^6$$
 falsch

umständlich aber korrekt:

$$(x^{3} \cdot x^{5})' = (x^{3})' \cdot x^{5} + x^{3} \cdot (x^{5})' = 3x^{2} \cdot x^{5} + x^{3} \cdot 5x^{4}$$
$$= 3x^{7} + 5x^{7} = 8x^{7}$$

5.4 Ableitung des Kehrwerts

Ist die Funktion g an der Stelle x differenzierbar und $g(x) \neq 0$, dann gilt

$$\left[\frac{1}{g(x)}\right]' = -\frac{g'(x)}{g^2(x)}.$$

Beweis

$$\left[\frac{1}{g(x)}\right]' = \lim_{h \to 0} \frac{1}{h} \left[\frac{1}{g(x+h)} - \frac{1}{g(x)}\right]
= \lim_{h \to 0} \left[\frac{1}{h} \cdot \frac{g(x) - g(x+h)}{g(x+h) \cdot g(x)}\right]
= \lim_{h \to 0} \left[\frac{-\left[g(x+h) - g(x)\right]}{h} \cdot \frac{1}{g(x+h) \cdot g(x)}\right]
= -\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \cdot \lim_{h \to 0} \frac{1}{g(x+h) \cdot g(x)}
= -g'(x) \cdot \frac{1}{g(x)^2} = -\frac{g'(x)}{g(x)^2}$$

5.5 Quotientenregel

Sind die Funktionen f und g an der Stelle x differenzierbar und ist $g(x) \neq 0$, dann gilt

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$$

Beweis

$$\left[\frac{f(x)}{g(x)}\right]' = \left[f(x) \cdot \frac{1}{g(x)}\right]'$$

$$= f'(x) \cdot \frac{1}{g(x)} + f(x) \cdot \left[\frac{1}{g(x)}\right]' \quad \text{(Produktregel)}$$

$$= f'(x) \cdot \frac{1}{g(x)} + f(x) \cdot \left(-\frac{g'(x)}{g(x)^2}\right) \quad \text{(Kehrwert-Regel)}$$

$$= f'(x) \cdot \frac{g(x)}{g(x)^2} - f(x) \cdot \frac{g'(x)}{g(x)^2}$$

$$= \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$$

"direkter" Beweis

$$\begin{split} & \left[\frac{f(x)}{g(x)} \right]' = \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h} = \lim_{h \to 0} \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x) \cdot h} \\ & = \lim_{h \to 0} \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x) + f(x) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x) \cdot h} \\ & = \lim_{h \to 0} \frac{\left[f(x+h) - f(x) \right] \cdot g(x) - f(x) \cdot \left[g(x+h) - g(x) \right]}{g(x+h) \cdot g(x) \cdot h} \\ & = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \cdot \frac{g(x)}{g(x+h) \cdot g(x)} \right) \\ & - \lim_{h \to 0} \left(\frac{f(x)}{g(x+h) \cdot g(x)} \cdot \frac{g(x+h) - g(x)}{h} \right) \\ & = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2} \end{split}$$

Beispiel 5.6

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{\cos x \cdot \cos x - \sin x \cdot (-\sin x)}{\cos^2 x}$$
$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

oder:

$$(\tan x)' = \dots = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{\cos^2 x}{\cos^2 x} + \frac{\sin^2 x}{\cos^2 x} = 1 + \tan^2 x$$

5.6 Kettenregel

Ist die Funktion g an der Stelle x differenzierbar und ist die Funktion f an der Stelle y = g(x) differenzierbar, so gilt:

$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

Beweis

Vorbereitungen:

Setze
$$k \stackrel{(*)}{=} g(x+h) - g(x) \Leftrightarrow g(x+h) \stackrel{(**)}{=} g(x) + k$$

Da g an der Stelle x differenzierbar ist, gilt

$$\lim_{h \to 0} k = \lim_{h \to 0} \left[g(x+h) - g(x) \right] = 0$$

Wenn h gegen 0 konvergiert, dann konvergiert k gegen 0. (***)

$$[f(g(x))]' = \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h}$$

$$= \lim_{h \to 0} \frac{f(g(x) + k) - f(g(x))}{h} \quad \text{mit } (**)$$

$$= \lim_{h \to 0} \left[\frac{f(g(x) + k) - f(g(x))}{k} \cdot \frac{k}{h} \right] \quad \text{multipliziere mit } 1 = \frac{k}{k}$$

$$= \lim_{h \to 0} \left[\frac{f(g(x) + k) - f(g(x))}{k} \cdot \frac{g(x+h) - g(x)}{h} \right] \quad \text{mit } (*)$$

$$= \lim_{h \to 0} \frac{f(g(x) + k) - f(g(x))}{k} \cdot \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{k \to 0} \frac{f(g(x) + k) - f(g(x))}{k} \cdot \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \quad \text{mit } (***)$$

$$= f'(g(x)) \cdot g'(x)$$

$$\left(\sin(x^2)\right)' = \dots$$

innere Funktion: $g(x) = x^2$

$$g'(x) = 2x$$

äussere Funktion: $f(y) = \sin(y)$ mit $y = g(x) = x^2$

$$f'(y) = \cos(y)$$

$$\dots = \cos(y) \cdot 2x = 2x \cos(x^2)$$

Beispiel 5.8

$$\left(\sin^2 x\right)' = \dots$$

Zur Erinnerung: $\sin^2 x$ ist eine Kurzschreibweise für $\left(\sin(x)\right)^2$.

innere Funktion: $g(x) = \sin x$

$$g'(x) = \cos x$$

äussere Funktion: $f(y) = y^2$ mit $y = \sin x$

$$f'(y) = 2y$$

$$\dots = 2y \cdot \cos x = 2\sin x \cdot \cos x$$

$$(a^x)' = ((e^{\ln a})^x)' = (e^{\ln a \cdot x})' = \dots$$

innere Funktion:
$$g(x) = \ln a \cdot x$$

$$g'(x) = \ln a$$

äussere Funktion:
$$f(y) = e^y$$
 mit $y = \ln a \cdot x$

$$f'(y) = e^y$$

$$\cdots = e^y \cdot \ln a = e^{\ln a \cdot x} \cdot \ln a = \left(e^{\ln a}\right)^x \cdot \ln a = \ln a \cdot a^x$$

Beispiel 5.10

$$\big(\ln(\ln(x))\big)' = \dots$$

innere Funktion:
$$g(x) = \ln x$$

$$g'(x) = 1/x$$

äussere Funktion:
$$f(y) = \ln y$$
 mit $y = \ln x$

$$f'(y) = 1/y$$

$$\cdots = \frac{1}{x} \cdot \frac{1}{y} = \frac{1}{x} \cdot \frac{1}{\ln x} = \frac{1}{x \ln x}$$

5.7 Die Ableitung der Umkehrfunktion

Ist f^{-1} die Umkehrfunktion von f, so gilt:

$$f(f^{-1}(x)) = x.$$

Nun leitet man die linke Seite (Kettenregel) und die rechte Seite der Gleichung ab:

$$f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$$

und löst die Gleichung algebrisch nach $(f^{-1})'(x)$ auf:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Beispiel 5.11

$$f(x) = y = \ln x$$

Umkehrfunktion:
$$f^{-1}(y) = e^y$$

$$(f^{-1})'(y) = e^y$$

$$(\ln x)' = \frac{1}{e^y} = \frac{1}{e^{\ln x}} = \frac{1}{x} \quad (x > 0)$$

$$y=f(x)=\sqrt[n]{x}=x^{1/n}$$

Umkehrfunktion:
$$f^{-1}(y) = y^n$$

 $(f^{-1})'(y) = n \cdot y^{n-1}$

$$(\sqrt[n]{x})' = \frac{1}{n \cdot y^{n-1}} = \frac{1}{n \cdot (x^{1/n})^{n-1}}$$

$$= \frac{1}{n \cdot x^{(n-1)/n}} = \frac{1}{n} \cdot \frac{1}{x^{1-1/n}} = \frac{1}{n} \cdot x^{1/n-1} (x \neq 0)$$

Die Potenzregel gilt also auch für rationale Exponenten.

Beispiel 5.13

$$y = f(x) = \arcsin x$$

Umkehrfunktion:
$$f^{-1}(y) = \sin y$$

 $(f^{-1})'(y) = \cos y$

$$(\arcsin(x))' = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2(y)}}$$
$$= \frac{1}{\sqrt{1 - \sin^2(\arcsin(x))}} = \frac{1}{\sqrt{1 - x^2}} \quad (-1 < x < 1)$$

5.8 Höhere Ableitungen

Leitet man die Ableitung einer Funktion ein zweites Mal ab, so spricht man von der zweiten Ableitung. Analog wird die dritte, vierte, \dots , n-te Ableitung definiert.

- Statt (f')' schreibt man f'' oder $\frac{\mathrm{d}^2 f}{\mathrm{d}x^2}$
- Statt ((f')')' schreibt man f''' oder $\frac{d^3 f}{dx^3}$
- Statt (((f')')')' schreibt man $f^{(4)}$ oder $\frac{d^4 f}{dx^4}$
- Statt ((((f')')')')' schreibt man $f^{(5)}$ oder $\frac{d^5 f}{dx^5}$
- usw.

Beispiel 5.14

$$\frac{d^3}{dx^3}(e^{2x}) = \frac{d^2}{dx^2}(2e^{2x}) = \frac{d}{dx}(4e^{2x}) = 8e^{2x}$$

$$(\sin x)^{(9)} = (\cos x)^{(8)} = (-\sin x)^{(7)} = (-\cos x)^{(6)} = (\sin x)^{(5)}$$
$$= (\cos x)^{(4)} = (-\sin x)''' = (-\cos x)'' = (\sin x)'$$
$$= \cos x$$

5.9 Implizite Differentiation (PAM)

Beispiel 1

Berechne die Steigung der Tangente im Punkt $P(1, y_0)$, der auf der Kurve $k: x^2 + y^2 = 4$ liegt und eine positive Ordinate hat.

(a) Leite die linke und rechte Seite der impliziten Funktionsgleichung nach x ab. Dabei werden Ausdrücke der Form h(y) mit der Kettenregel

$$\frac{\mathrm{d}h(y)}{\mathrm{d}x} = \frac{\mathrm{d}h(y)}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}h(y)}{\mathrm{d}y} \cdot y'$$

nach x abgeleitet:

$$x^2 + y^2 = 4 \quad || \frac{\mathrm{d}}{\mathrm{d}x}$$

$$2x + 2y \cdot y' = 0$$

$$2y \cdot y' = -2x$$

(b) Löse die Gleichung aus (a) nach y' auf.

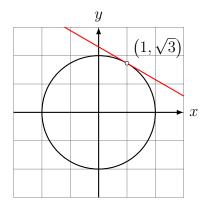
$$y' = \frac{-2x}{2y} = -\frac{x}{y}$$

(c) Berechne die Koordinate y_0 und setze sie mit $x_0 = 1$ in die Gleichung von (b) ein:

$$1^2 + y^2 = 4$$
 \Rightarrow $y^2 = 3$ \Rightarrow $y = \pm\sqrt{3}$ \Rightarrow $P(1, \sqrt{3})$

Steigung im Punkt $P(1, \sqrt{3})$:

$$m = -\frac{1}{\sqrt{3}} \quad \Rightarrow \quad \varphi = \arctan m = -30^{\circ}$$



Beispiel 2

Berechne die Winkel zwischen der Kurve $3x^3 - 12x + y^3 + 3y = 0$ und der x-Achse.

Schnittpunkt(e) der Kurve mit der x-Achse:

$$y = 0$$
: $3x^3 - 12x = 0$
 $x^3 - 4x = 0$
 $x(x^2 - 4) = 0$

Schnittpunkte: $S_1(0,0), S_2(2,0), S_3(-2,0)$

$$3x^{3} - 12x + y^{3} + 3y = 0 \qquad || d/dx$$

$$9x^{2} - 12 + 3y^{2}y' + 3y' = 0$$

$$3y^{2}y' + 3y' = 12 - 9x^{2}$$

$$y^{2}y' + y' = 4 - 3x^{2}$$

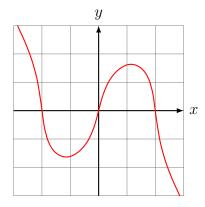
$$y'(y^{2} + 1) = 4 - 3x^{2}$$

$$y' = \frac{4 - 3x^{2}}{y^{2} + 1}$$

$$S_1(0,0)$$
: $m_1 = \frac{4-0}{0+1} = 4 \implies \varphi_1 = \arctan 4 = 75.96^\circ$

$$S_2(2,0)$$
: $m_2 = \frac{4-12}{0+1} = -8 \quad \Rightarrow \quad \varphi_2 = \arctan(-8) = -82.87^{\circ}$

$$S_3(-2,0)$$
: $m_3 = \frac{4-12}{0+1} = -8 \quad \Rightarrow \quad \varphi_3 = \arctan(-8) = -82.87^\circ$



Beispiel 3

Berechne die Ableitung von $y = x^x$ für (x > 0).

$$y = x^{x} \qquad || \ln y = \ln x^{x}$$

$$\ln y = x \ln x \qquad || d/dx$$

$$\frac{1}{y} \cdot y' = 1 \cdot \ln x + x \cdot \frac{1}{x}$$

$$y' = y(\ln x + 1) \qquad (y \text{ durch } x^{x} \text{ ersetzen})$$

$$y' = x^{x}(\ln x + 1)$$

Diese Methode heisst "Differenzieren nach Logarithmieren" oder kürzer "logarithmisches Differenzieren".

6 Stetigkeit und Differenzierbarkeit

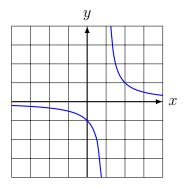
6.1 Definitionslücken

Ist eine Funktion f an einer einzelnen Stelle x_0 nicht definiert, so spricht man von einer $Definitionsl\ddot{u}cke$.

Im "Schulalltag" entstehen Definitionslücken an den Stellen, wo man durch Null dividiert.

Beispiel 6.1

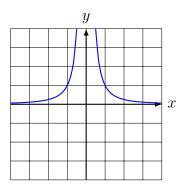
$$f(x) = \frac{1}{x - 1}$$



x = 1 ist Polstelle mit Vorzeichenwechsel

Beispiel 6.2

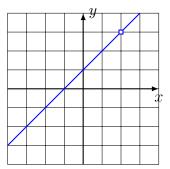
$$f(x) = \frac{1}{x^2}$$



x=0 ist Polstelle ohne Vorzeichenwechsel

Beispiel 6.3

$$f(x) = \frac{(x-2)(x+1)}{x-2} \stackrel{*}{=} x+1 \quad [* \text{ nur erlaubt, wenn } x \neq 2]$$



x=2 ist eine stetig behebbare Definitionslücke.

6.2 Stetigkeit

Anschaulich

Eine Funktion f ist an einer Stelle x_0 stetig, wenn der Graph von f in einer Umgebung von x_0 ohne Unterbruch gezeichnet werden kann.

Achtung: Diese Beschreibung kann in einigen Fällen irreführend sein (siehe Beispiel 6.5).

Formal (Limeskriterium)

Eine Funktion f ist an der Stelle x_0 stetig, wenn der Funktionswert und der Grenzwert an der Stelle x_0 existieren und übereinstimmen; d. h. wenn

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Eine Funktion ist auf einem Intervall I stetig, wenn sie an jeder Stelle des Intervalls I stetig ist.

Bemerkung

Fordert man nur, dass an der Stelle x_0 der links- oder der rechtsseitige Grenzwert

$$\lim_{x \to x_0^-} f(x) = f(x_0)$$
 bzw. $\lim_{x \to x_0^+} f(x) = f(x_0)$

existiert, so spricht man von links- bzw. rechtsseitiger Stetigkeit.

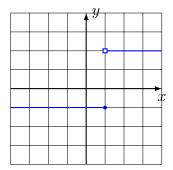
Beispiel:

 $f(x) = \sqrt{x}$ ist an der Stelle $x_0 = 0$ rechtsseitig stetig, denn:

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \sqrt{x} = 0 = f(0).$$

Beispiel 6.4

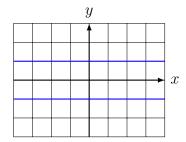
$$f(x) = \begin{cases} -1 & \text{wenn } x \le 1\\ 2 & \text{sonst} \end{cases}$$



f ist an der Stelle x=1 nicht stetig. (x=1 ist Sprungstelle)

Beispiel 6.5

$$f(x) = \begin{cases} 1 & \text{wenn } x \in \mathbb{Q} \\ -1 & \text{wenn } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$



f ist an keiner Stelle stetig!

Vorsicht

Die Funktion f(x) = 1/x ist für jedes $x \in D$ stetig!

f ist für x = 0 bloss nicht definiert.

Eine Auswahl stetiger Funktionen

• Potenz
funktionen: $x^k, k \in \mathbb{Z}$

• Trigonometrische Funktionen: sin(x), cos(x), tan(x)

• Exponentialfunktionen: a^x

- Logarithmus
funktionen: $\log_a x$

Eigenschaften

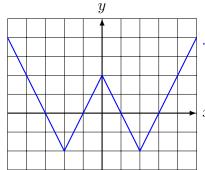
Sind die Funktionen f und g auf einem gemeinsamen Definitionsbereich stetig, dann gilt:

- f + g ist stetig
- f g ist stetig
- $f \cdot g$ ist stetig
- f/g ist stetig
- $f \circ g$ ist stetig

6.3 Differenzierbarkeit

Anschaulich

Eine Funktion f ist an der Stelle x_0 differenzierbar, wenn dort (eindeutig) die Tangtente an den Graphen gezeichnet werden kann.



$$f(x) = |2 \cdot |x| - 4|-2$$

f ist an den Stellen x = -2, x = 0 und x = 2 nicht differenzierbar.

Formal

Eine Funktion f ist an der Stelle x_0 differenzierbar, wenn der Grenzwert

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

existiert.

Eine Funktion ist auf dem Intervall I=(a,b) differenzierbar, wenn sie an jeder Stelle $x\in I$ differenzierbar ist.

Analog zur links- und rechtssetigen Stetigkeit werden links- und rechtssetige Differenzierbarkeit definiert.

Differenzierbarkeit und Stetigkeit

Wenn eine Funktion f an der Stelle x_0 differenzierbar ist, dann ist sie dort auch immer stetig. Die Umkehrung gilt nicht, wie das Beispiel der Funktion f(x) = |x| an der Stelle x = 0 zeigt.

7 Monotonie

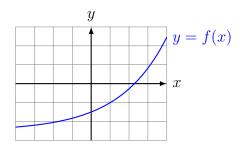
Definitionen

Ist die Funktion f auf einem Intervall I definiert, so heisst f

- monoton wachsend, wenn $\forall x_1, x_2 \in I$ mit $x_1 < x_2$ die Ungleichung $f(x_1) \leq f(x_2)$ erfüllt ist.
- monoton fallend, wenn $\forall x_1, x_2 \in I$ mit $x_1 < x_2$ die Ungleichung $f(x_1) \geq f(x_2)$ erfüllt ist.
- ullet monoton, wenn f auf dem Intevall I entweder monoton wachsend oder monoton fallend auf I ist.
- $nicht\ monoton$, wenn f auf dem Intervall I weder monoton wachsend noch monoton fallend ist.

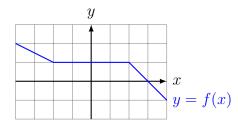
Gilt statt $f(x_1) \le f(x_2)$ bzw. $f(x_1) \ge f(x_2)$ sogar $f(x_1) < f(x_2)$ bzw. $f(x_1) > f(x_2)$, so ist f streng monoton wachsend bzw. streng monoton fallend.

Beispiel 7.1



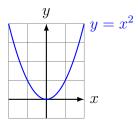
f ist streng monoton wachsend auf I = [-4, 4]

Beispiel 7.2



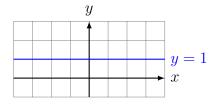
f ist monoton fallend auf I = [-4, 4]

Beispiel 7.3



 $f(x) = x^2$ ist auf I = [-2, 2] nicht monoton.

Beispiel 7.4



f(x) = 1 ist auf

- jedem Intervall $I \subset \mathbb{R}$ monoton.
- auf keinem Intervall $I \subset \mathbb{R}$ streng monoton.

Satz 7.1

- Ist f im Intervall I differenzierbar und monoton steigend, so gilt $f'(x) \ge 0$ für alle $x \in I$.
- Ist f im Intervall I differenzierbar und monoton fallend, so gilt $f'(x) \leq 0$ für alle $x \in I$.

Beweis

Es sei f auf I monoton steigend und $x_0 \in I$. Wegen der Monotonie gilt für alle $x_1 \in I$ mit $x_0 < x_1$:

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} \ge 0$$

$$\lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} \ge 0$$

$$f'(x_0) \ge 0$$

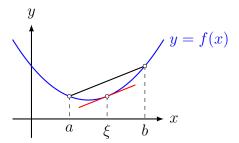
Analog für monoton fallende Funktionen.

Die Umkehrung dieses Satzes gilt auch; ist aber etwas schwieriger zu beweisen. Dazu benötigt man den ...

Satz 7.2 (Mittelwertsatz)

Ist die Funktion f im Intervall [a, b] stetig und differenzierbar in (a, b), dann gibt es eine Stelle ξ mit $a < \xi < b$, so dass

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$



(der Beweis folgt später)

Satz 7.3 (Monotoniesatz)

Ist die Funktion f auf dem Intervall I differenzierbar und gilt f'(x) > 0 [f'(x) < 0] für alle $x \in I$, dann ist f in I streng monoton wachsend [fallend].

Beweis

Es sind $x_1, x_2 \in I$ mit $x_1 < x_2$. Gemäss Mittelwertsatz gibt es eine Stelle $\xi \in I$ mit $x_1 < \xi < x_2$, so dass

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi)$$

Da nach Voraussetzung $f'(\xi) > 0$ und $x_2 - x_1 > 0$ sind, gilt $f(x_2) - f(x_1) > 0$. Daraus folgt $f(x_2) > f(x_1)$.

Also ist f monoton wachsend.

Die Standardaufgabe

Auf welchen Intervallen, ist die Funktion mit der Gleichung

$$f(x) = \frac{1}{4}x^4 + 2x^3 + \frac{5}{2}x^2 - 12x + 1$$

monoton wachsend bzw. fallend?

Schritt 1

Erste Ableitung berechnen:

$$f'(x) = x^3 + 6x^2 + 5x - 12$$

Schritt 2

Bestimme die Stellen mit horizontaler Tangente (f'(x) = 0):

$$f'(x) = x^3 + 6x^2 + 5x - 12 = 0$$
 $\stackrel{\text{TR}}{\Rightarrow}$ $x_1 = -4, x_2 = -3, x_3 = 1$

Schritt 3

Zerlege f' aufgrund der Nullstellen in Linearfaktoren und erstelle damit eine Vorzeichentabelle:

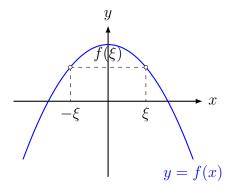
$$f'(x) = x^3 + 6x^2 + 5x - 12 = (x+4)(x+3)(x-1)$$

Bereich	x < -4	-4 < x < -3	-3 < x < 1	1 < x
x+4	_	+	+	+
x+3	_	_	+	+
x-1	_	_	_	+
f'(x)	_	+	_	+
f(x)	fallend	wachsend	fallend	wachsend

Der Eintrag in Zeile "x+3" und Kolonne "-4 < x < -3" ist so zu ermitteln: Wenn x im Intervall -4 < x < -3 liegt, dann ist der Faktor x+3 negativ. Das Gesamtvorzeichen eines Intervalls erhält man durch "Multiplizieren" der Vorzeichen innerhalb der Kolonne.

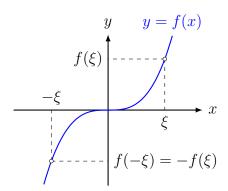
8 Symmetrie

Achsensymmetrie bezüglich x = 0



$$f(\xi) = f(-\xi)$$
 für alle $\xi \in D_f$ (f ist "gerade")

Punktsymmetrie bezüglich (0,0)



$$f(-\xi) = -f(\xi)$$
 für alle $\xi \in D_f$ (f ist "ungerade")

Bemerkung

Jede Funktion f kann als Summe einer geraden Funktion g und einer ungeraden Funktion u dargestellt werden.

$$f(x) = \frac{1}{2}f(x) + \frac{1}{2}f(x) = \frac{1}{2}f(x) + \frac{1}{2}f(-x) + \frac{1}{2}f(x) - \frac{1}{2}f(-x)$$

$$= \underbrace{\frac{1}{2}[f(x) + f(-x)]}_{g(x)} + \underbrace{\frac{1}{2}[f(x) - f(-x)]}_{u(x)}$$

g ist gerade, denn:

$$g(-x) = \frac{1}{2} [f(-x) + f(x)] = \frac{1}{2} [f(x) + f(-x)] = g(x)$$
 für alle $x \in D$

u ist ungerade, denn:

$$u(-x)=\frac{1}{2}\big[f(-x)-f(x)\big]=-\frac{1}{2}\big[f(x)-f(-x)\big]=-u(x)$$
 für alle $x\in D$

9 Asymptotisches Verhalten

Wie verhält sich eine Funktion f für grosse |x|?

konkret:
$$\lim_{x \to -\infty} f(x) = ?$$
 und $\lim_{x \to +\infty} f(x) = ?$

9.1 Ganzrationale Funktionen (Polynome)

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \quad (a_i \in \mathbb{R}, a_n \neq 0)$$

 x^n ausklammern:

$$f(x) = x^n \left(a_n + \frac{a_{n-1}}{x} + \frac{a_{n-2}}{x^2} + \dots + \frac{a_1}{x^{n-1}} + \frac{a_0}{x^n} \right)$$

$$f(x) \approx a_n x^n$$
 für grosse $|x|$

Das Monom mit dem grössten Exponenten bestimmt das asymptotische Verhalten von f.

Beispiel 9.1

$$f(x) = -2x^3 + 5x^2 - 7x + 1$$

$$f(x) = x^3 \left(-2 + \frac{5x^2}{x^3} - \frac{7x}{x^3} + \frac{1}{x^3} \right)$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (-2x^3) = -\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (-2x^3) = +\infty$$

Beispiel 9.2

$$f(x) = 1 - 3x^2 - \frac{1}{2}x^4$$

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \left(-\frac{1}{2}x^4\right) = -\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(-\frac{1}{2}x^4 \right) = -\infty$$

Beispiel 9.3

$$f(x) = (1 - 3x)(2 - 4x^2)$$

$$f(x) = 12x^3 + \dots$$
 (Monome mit kleinerem Grad)

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 12x^3 = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 12x^3 = -\infty$$

9.2 Gebrochenrationale Funktionen

$$f(x) = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0}$$
$$(a_i, b_j \in \mathbb{R}, a_m \neq 0, b_n \neq 0)$$

Falls $m \ge n$, so lässt sich f durch eine Polynomdivision als Summe einer ganzrationalen Funktion q(x) und einer echt gebrochenrationalen Funktion r(x) darstellen:

$$f(x) = \frac{a(x)}{b(x)} = q(x) + r(x)$$

Beispiel 9.4

$$f(x) = \frac{x^2 + 3x - 4}{2x^3 - 3x^2 + x + 1}$$

$$\lim_{x \to -\infty} f(x) = 0$$

$$\lim_{x \to +\infty} f(x) = 0$$

Beispiel 9.5

$$f(x) = \frac{3x^2 + 2x + 1}{2x^2 + x - 1}$$

Polynomdivision:

$$(3x^2 + 2x + 1) : (2x^2 + x - 1) = \frac{3}{2} + \frac{1}{2} \cdot \frac{x+5}{2x^2 + x - 1}$$

$$\lim_{x \to -\infty} f(x) = \frac{3}{2}$$

$$\lim_{x \to +\infty} f(x) = \frac{3}{2}$$

Beispiel 9.6

$$f(x) = \frac{x^3 - 2x^2 - 2x - 1}{x^2 - 3x - 1}$$

Polynomdivision:

$$(x^3 - 2x^2 - 2x - 1) : (x^2 - 3x - 1) = x + 1 + \frac{2x}{2x^2 + x - 1}$$

48

$$\lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to +\infty} f(x) = +\infty$$

Darüber hinaus: $f(x) \approx x + 1$ für grosse |x|

9.3 Exponentialfunktionen

Für
$$a>1$$
 gilt: $\lim_{x\to -\infty}a^x=\mathbf{0}$
$$\lim_{x\to +\infty}a^x=\mathbf{\infty}$$

Exponentialfunktionen verändern sich schneller als Potenzfunktionen!

Für einen fest gewählten Exponenten r gilt:

$$\lim_{x \to +\infty} \frac{x^r}{a^x} = \mathbf{0}$$

Beispiel 9.7

$$f(x) = (1 - x^2)e^x$$

$$\lim_{x \to -\infty} f(x) = 0$$

$$\lim_{x \to +\infty} f(x) = -\infty$$

9.4 Logarithmusfunktionen

Für
$$a>1$$
 gilt: $\lim_{x\to 0^+}\log_a(x)=-\infty$
$$\lim_{x\to +\infty}\log_a(x)=+\infty$$

Logarithmusfunktionen verändern sich langsamer als Potenzfunktionen!

Für einen fest gewählten Exponenten r gilt:

$$\lim_{x \to \infty} \frac{\log_a(x)}{x^r} = 0$$

$$\lim_{r \to 0} x^r \log_a(x) = 0$$

Beispiel 9.8

$$f(x) = (1 - x^2) \ln x$$

$$\lim_{x \to 0^+} f(x) = -\infty$$

$$\lim_{x \to +\infty} f(x) = -\infty$$

9.5 Trigonometrische Funktionen

Die Funktionen $\sin x$, $\cos x$, $\tan x$ haben keine Grenzwerte für $x \to -\infty$ und $x \to +\infty$.

Aufgrund der Beschränktheit von $\sin(x)$ und $\cos(x)$ kann im Verbund mit anderen Funktionen das asymptotische Verhalten jedoch definiert sein.

Beispiel 9.9

$$f(x) = \cos\left(\frac{1}{x}\right)$$

$$\lim_{x \to -\infty} f(x) = 1$$

$$\lim_{x \to +\infty} f(x) = 1$$

Beispiel 9.10

$$f(x) = \frac{\sin x}{x}$$

$$\lim_{x \to -\infty} f(x) = 0$$

$$\lim_{x \to +\infty} f(x) = 0$$

10 Nullstellen

Ist f eine reelle Funktion mit dem Definitionsbereich D, so ist $x_0 \in D$ eine Nullstelle von f, wenn gilt $f(x_0) = 0$.

10.1 Nullstellen ganzrationaler Funktionen

Für ganzrationale Funktionen (Polynome) bis zum Grad 4 gibt es Lösungsformeln zur Nullstellenbestimmung.

Die Formeln zum Lösen linearer und quadratischer Funktionen sollten bekannt sein. Kubische und quartische Gleichungen werden (teilweise) im PAM-Unterricht behandelt.

Für Polynomfunktionen vom Grad 5 und höher ist man auf numerische Näherungsverfahren angewiesen.

Beispiel 10.1

$$f(x) = 3x + 7$$

$$x = -7/3$$

Beispiel 10.2

$$f(x) = x^2 - 7x + 12$$

$$f(x) = (x-3)(x-4) = 0 \implies x_1 = 3, x_2 = 4$$

Beispiel 10.3

$$f(x) = x^3 - 3x$$

$$f(x) = x(x^2 - 3) = 0 \implies x_1 = 0, x_2 = -\sqrt{3}, x_3 = \sqrt{3}$$

Abspalten von Linearfaktoren

Wenn von der Polynomfunktion f vom Grad n eine Nullstelle x_0 bekannt ist, lässt sie sich durch Polynomdivsion der Linearfaktor $(x - x_0)$ abspalten.

$$f(x) = g(x) \cdot (x - x_0)$$

wobei g(x) ein Polynom vom Grad n-1 ist.

Beispiel 10.4

Die Polynomdivision zeigt, dass x = 3 eine Nullstelle von $f(x) = x^3 - 5x^2 + 7x - 3$ ist.

Das Horner-Schema

Durch Ausklammern kann die Auswertung des Polynoms auf eine Folge von Multiplikationen und Additionen reduziert werden:

$$f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

$$f(x) = x(a_3 x^2 + a_2 x + a_1) + a_0$$

$$f(x) = x(x(\underbrace{a_3 x + a_2}_{\alpha}) + a_1) + a_0 = x(\underbrace{x\alpha + a_1}_{\beta}) + a_0 = \underbrace{x\beta + a_0}_{\gamma}$$

Die geschickte tabellarische Anordnung dieser Operationen ergibt das Horner-Schema:

Beispiel 10.5

Ist $x = x_0$ Nullstelle des Polynoms f(x) vom Grad n, so sind die ersten n-1 Zwischenresultate im Horner-Schema die Koeffizienten des Quotienten $g(x) = f(x) : (x - x_0)$.

Beispiel 10.6

10.2 Nullstellen gebrochenrationaler Funktionen

Eine gebrochenrationale Funktion ist ein Quotient aus zwei ganzrationalen Funktionen.

$$f(x) = \frac{p(x)}{q(x)}$$

 x_0 ist genau dann Nullstelle von f, wenn x_0 Nullstelle von p aber nicht von q ist.

Beispiel 10.7

$$f(x) = \frac{x+1}{x-1}$$

$$x = -1$$

Beispiel 10.8

$$f(x) = \frac{x^2 - 7x + 12}{x - 3}$$

$$\frac{x^2 - 7x + 12}{x - 3} = \frac{(x - 3)(x - 4)}{x - 3}$$

x = 4 ist Nullstelle

(x = 3 ist eine (be)hebbare Singularität)

10.3 Nullstellen von Exponential- und Logarithmusfunktionen

Beispiel 10.9

$$f(x) = e^x$$

 $e^x > 0$ für alle $x \in \mathbb{R}$

f hat keine Nullstellen

Beispiel 10.10

$$f(x) = (x^2 - 9) \cdot e^x$$

Ein Produkt reeller Zahlen ist null, wenn mindestens ein Faktor null ist.

Nullstellen: $x_1 = 3$, $x_2 = -3$

Beispiel 10.11

$$f(x) = \log_{10} x$$

Die Graphen aller Logarithmusfunktionen gehen durch (1,0).

$$x_0 = 1$$

Beispiel 10.12

$$f(x) = \ln(x^2 - 5x + 7)$$

$$x^2 - 5x + 7 = 1$$

$$x^2 - 5x + 6 = 0$$

$$(x - 2)(x - 3) = 0$$

$$x_1 = 2$$

$$x_2 = 3$$

10.4 Nullstellen trigonometrischer Funktionen

Beispiel 10.13

$$f(x) = \sin(ax + b)$$

$$\sin(ax + b) = 0$$

$$\sin(ax + b) = \sin(k \cdot \pi) \quad (k \in \mathbb{Z})$$

$$ax_k + b = k \cdot \pi \quad (k \in \mathbb{Z})$$

$$x_k = \frac{k \cdot \pi}{a} - \frac{b}{a} \quad (k \in \mathbb{Z})$$

Beispiel 10.14

$$f(x) = \cos(ax + b)$$

$$\cos(ax + b) = 0$$

$$\cos(ax + b) = \cos\left(\frac{\pi}{2} + k \cdot \pi\right) \quad (k \in \mathbb{Z})$$

$$ax_k + b = \frac{\pi}{2} + k \cdot \pi \qquad (k \in \mathbb{Z})$$

$$x_k = \frac{k}{a} \cdot \pi + \frac{\pi}{2a} - \frac{b}{a} \quad (k \in \mathbb{Z})$$

Beispiel 10.15

$$f(x) = \tan(ax + b)$$

$$\tan(ax + b) = 0$$

$$\tan(ax + b) = \tan(k \cdot \pi) \quad (k \in \mathbb{Z})$$

$$ax_k + b = k \cdot \pi \quad (k \in \mathbb{Z})$$

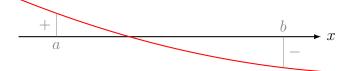
$$x_k = \frac{k \cdot \pi}{a} - \frac{b}{a} \quad (k \in \mathbb{Z})$$

10.5 Das Bisektionsverfahren

Das folgende Verfahren erlaubt es, eine Nullstelle ξ einer stetigen Funktion f im Intervall $a \leq \xi \leq b$ näherungsweise zu berechnen, wenn f(a) und f(b) unterschiedliches Vorzeichen haben.

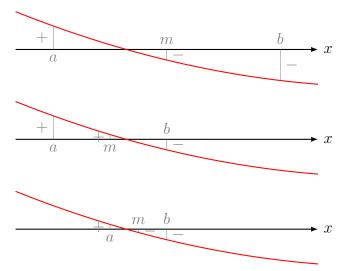
Vorbereitung

- Gebe die Genauigkeit ε der Lösung vor (z. B. $\varepsilon = 10^{-6}$).
- Wähle $a < b \text{ mit } f(a) \cdot f(b) < 0.$



Iterationsschritt

- Berechne $(a+b)/2 \to m$
- Wenn $f(a) \cdot f(m) < 0$: $m \to b$ sonst: $m \to a$
- Wenn $|b-a|<\varepsilon$: gib m aus und beende das Verfahren sonst: wiederhole den Schritt



PROGRAM: BISECT

- 1 :Prompt A,B,E
- 2 :Repeat abs(B-A)<E
- $3:(A+B)/2\rightarrow M$
- $4 : A \rightarrow X : prgmF : Y \rightarrow S$
- $5: M \rightarrow X: prgmF: Y \rightarrow T$
- 6 :If S*T<0
- 7 :Then
- $8:M\rightarrow B$
- 9 :Else
- $10 \quad : M {\rightarrow} A$
- 11 :End
- 12 :Disp M
- 13 :End

Das Programm setzt voraus, dass sich die Funktionsgleichung von f in der Form $f(X) \rightarrow Y$ im Programm prgmF befindet.