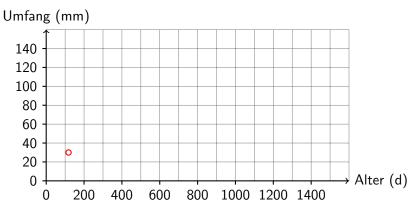
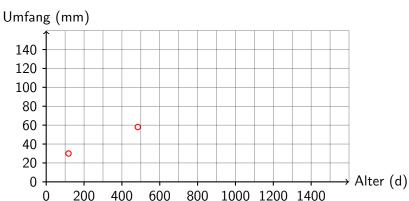
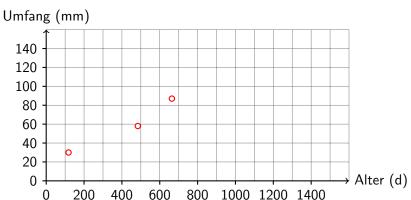
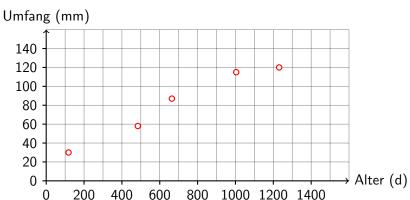

Lineare Regression


Theorie & Aufgaben


In einer Orangenplantage wurden Alter (Anzahl Tage seit dem 31.12.1968) und Umfang (in mm auf Brusthöhe) gemessen.


Alter (d)	Umfang (mm)
118	30
484	58
664	87
1004	115
1231	120
1372	142
1582	145

Beachte, dass Alter und Umfang jeweils paarweise auftreten.



0

Stelle die Daten als Streudiagramm im vorbereiteten Koordinatensystem dar.

Umfang (mm) 140 120 Ó 100 0 80 60 40 О 20 → Alter (d) 200 400 600 800 1000 1200 1400

0

0

200

400

600

Stelle die Daten als *Streudiagramm* im vorbereiteten Koordinatensystem dar.

Umfang (mm)

140
120
100
80
60
40
20

800

1000 1200 1400

→ Alter (d)

200

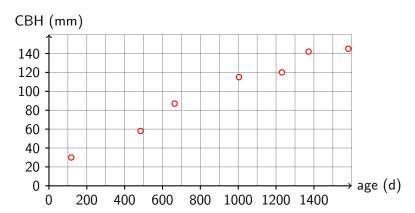
0

400

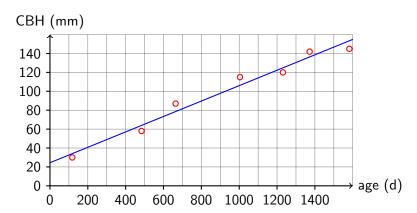
600

Umfang (mm) O 140 120 Ó 100 0 80 60 40 О 20 → Alter (d) 0

800


1000 1200 1400

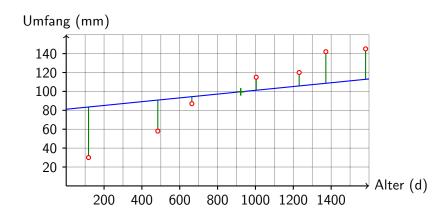
Aufgrund der Grafik vermuten wir einen linearen Zusammenhang zwischen Alter und Umfang. Diese Beziehung können wir durch eine Gleichung der Form


$$g: y = a \cdot x + b$$

beschreiben, wobei a die Steigung und b der y-Achsenabschnitt der zur Gleichung gehörenden Ausgleichsgeraden sind.

Nach welchen Kriterien sollen wir die Werte der Parameter a und b festlegen bzw. die Ausgleichsgerade durch die Punkte legen?

Nach welchen Kriterien sollen wir die Werte der Parameter a und b festlegen bzw. die Ausgleichsgerade durch die Punkte legen?


Die Abweichungen nach oben und nach unten sollen sich gegenseitig aufheben:

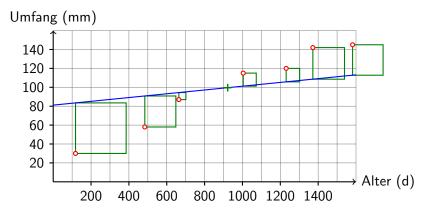
$$\sum_{i=1}^{n} \left[y_i - \underbrace{\left(a \cdot x_i + b \right)}_{g(x_i)} \right] = 0$$

Man kann zeigen, dass dies gleichbedeutend damit ist, dass die Ausgleichsgerade durch den *Datenschwerpunkt* $S(\overline{x}, \overline{y})$ geht.

☐3.1 Erstes Kriterium

Etwa so:

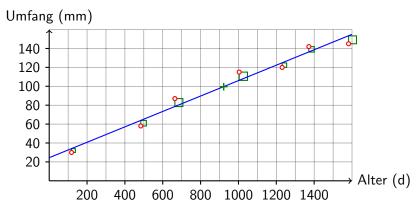
☐ 3.2 Zweites Kriterium


Das zweite Kriterium liegt nicht auf der Hand aber es ist vernünftig. Es verlangt, dass für die gesuchte Gerade die Summe der Abstandsquadrate möglichst klein werden soll. Das bedeutet: Wähle a und b so, dass die Summe

$$\sum_{i=1}^{n} \left[y_i - \underbrace{(ax_i + b)}_{g(x_i)} \right]^2$$

minimal wird.

└3.2 Zweites Kriterium


Schlechte Anpassung

└─3 Die Bestimmung der Ausgleichsgeraden

☐3.2 Zweites Kriterium

Optimale Anpassung

Mit dem Wissen aus der 5. Klasse kann man zeigen, dass folgendes a die gewünschte Eigenschaft hat:

$$a = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})(x_i - \overline{x})} = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{s_{xy}}{s_x^2}$$

 s_{xy} : empirische Kovarianz

 s_x^2 : empirische Varianz (sozusagen s_{xx})

 $S(\overline{x}, \overline{y})$ muss auf der Ausgleichsgeraden liegen:

Mit dem Wissen aus aus der 5. Klasse kann man zeigen, dass folgendes a die gewünschte Eigenschaft hat:

$$a = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})(x_i - \overline{x})} = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{s_{xy}}{s_x^2}$$

 s_{xy} : empirische Kovarianz

 s_{x}^{2} : empirische Varianz (sozusagen s_{xx})

 $S(\overline{x}, \overline{y})$ muss auf der Ausgleichsgeraden liegen:

$$\overline{y} = a \cdot \overline{x} + b \quad \Rightarrow \quad \boxed{b = \overline{y} - a \cdot \overline{x}}$$

$$\overline{x} = 922$$
, $\overline{y} = 100$

└3.3 Zahlenbeispiel

$$\overline{x} = 922$$
, $\overline{y} = 100$

X	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	y	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	$(x_i-\overline{x})(y_i-\overline{y})$
118	-804	646416	30	-70	4900	56280
484	-438	191844	58	-42	1764	18396
664	-258	66564	87	-13	169	3354
1004	82	6724	115	15	225	1230
1231	309	95481	120	20	400	6180
1372	450	202500	142	42	1764	18900
1582	660	435600	145	45	2025	29700
922	0	1645129	100	0	11247	134040

$$\overline{x} = 922$$
, $\overline{y} = 100$

X	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	y	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	$(x_i-\overline{x})(y_i-\overline{y})$
118	-804	646416	30	-70	4900	56280
484	-438	191844	58	-42	1764	18396
664	-258	66564	87	-13	169	3354
1004	82	6724	115	15	225	1230
1231	309	95481	120	20	400	6180
1372	450	202500	142	42	1764	18900
1582	660	435600	145	45	2025	29700
922	0	1645129	100	0	11247	134040

$$a = \frac{s_{xy}}{s_{xx}} = \frac{134\,140}{1\,645\,129} = 0.0815$$

$$\overline{x} = 922$$
, $\overline{y} = 100$

X	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	y	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	$(x_i - \overline{x})(y_i - \overline{y})$
118	-804	646416	30	-70	4900	56280
484	-438	191844	58	-42	1764	18396
664	-258	66564	87	-13	169	3354
1004	82	6724	115	15	225	1230
1231	309	95481	120	20	400	6180
1372	450	202500	142	42	1764	18900
1582	660	435600	145	45	2025	29700
922	0	1645129	100	0	11247	134040

$$a = \frac{s_{xy}}{s_{xx}} = \frac{134\,140}{1\,645\,129} = 0.0815$$

$$b = \overline{y} - a \cdot \overline{x} = 100 - 0.0815 \cdot 922 = 24.8$$

$$\overline{x} = 922$$
, $\overline{y} = 100$

X	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	y	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	$(x_i - \overline{x})(y_i - \overline{y})$
118	-804	646416	30	-70	4900	56280
484	-438	191844	58	-42	1764	18396
664	-258	66564	87	-13	169	3354
1004	82	6724	115	15	225	1230
1231	309	95481	120	20	400	6180
1372	450	202500	142	42	1764	18900
1582	660	435600	145	45	2025	29700
922	0	1645129	100	0	11247	134040

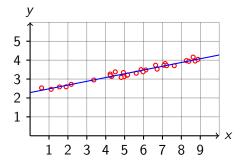
$$a = \frac{s_{xy}}{s_{xx}} = \frac{134\,140}{1\,645\,129} = 0.0815$$

$$b = \overline{y} - a \cdot \overline{x} = 100 - 0.0815 \cdot 922 = 24.8$$

Ausgleichsgerade: $y = 0.0815 \cdot x + 24.8$

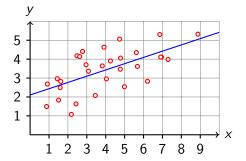
Wenn man die empirische Kovarianz durch die empirischen Standardabweichungen der x- und y-Werte dividiert, so erhält man den Korrelationskoeffizienten

$$r_{xy} = \frac{s_{xy}}{s_x \cdot s_y}$$

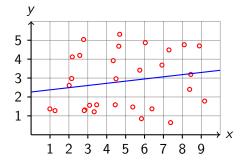

Man kann beweisen, dass r_{xy} die Ungleichungen

$$-1 \le r_{xy} \le 1$$

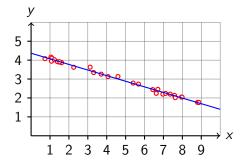
erfüllt.


Der Korrelationskoeffizient ist ein Mass für die Güte des linearen Zusammenhangs.

- ▶ Je näher r_{xy} bei +1 liegt, desto besser ist der lineare Zusammenhang (Korrelation). $r_{xy} = 1$ bedeutet, dass alle (x_i, y_i) auf der (steigenden) Regressionsgeraden liegen.
- ▶ Je näher r_{xy} bei 0 liegt, desto schlechter ist der lineare Zusammenhang.
- ▶ Je näher r_{xy} bei -1 liegt, desto besser ist der lineare Zusammenhang. $r_{xy} = -1$ bedeutet, dass alle (x_i, y_i) auf der (fallenden) Regressionsgeraden liegen.


$$y = 0.2x + 2.28$$

$$r_{xy} = 0.98$$


$$y = 0.33x + 2.1$$

$$r_{xy} = 0.63$$

$$y = 0.11x + 2.26$$

$$r_{xy} = 0.19$$

$$y = -0.29x + 4.37$$
$$r_{xy} = -0.99$$

$$r_{xy} = -0.99$$

Im Buch von Bortz und Schuster findet man dazu (S. 159):

"Hat man zwischen zwei Variablen x und y eine Korrelation gefunden, kann diese im kausalen Sinne folgendermassen interpretiert werden:

- x beeinflusst y kausal,
- y beeinflusst x kausal,
- x und y werden von einer dritten oder weiteren Variablen kausal beeinflusst,
- x und y beeinflussen sich wechselseitig kausal.

Der Korrelationskoeffizient liefert keine Informationen darüber, welche dieser Interpretationen richtig ist. (...)

Merke: Korrelationen dürfen ohne zusätzliche Informationen nicht kausal interpretiert werden."

Gegeben ist folgende gepaarte Stichprobe:

- ▶ Bestimme die Gleichung der Regressionsgeraden.
- Berechne den Korrelationskoeffizienten.
- Skizziere das Streudiagramm und die Ausgleichsgerade.

x_i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	Уi	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	$(x_i-\overline{x})(y_i-\overline{y})$
3	-7	49	12	5	25	-35
9	-1	1	5	-2	4	2
18	8	64	4	-3	9	-24
30	0	114	21	0	38	-57

Xi	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	Уi	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	$(x_i-\overline{x})(y_i-\overline{y})$
3	-7	49	12	5	25	-35
9	-1	1	5	-2	4	2
18	8	64	4	-3	9	-24
30	0	114	21	0	38	-57

$$\overline{x} = 10$$
, $\overline{y} = 7$

$$\overline{x} = 10$$
, $\overline{y} = 7$

$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{-57}{114} = -\frac{1}{2}$$

Xi	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	Уi	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	$(x_i-\overline{x})(y_i-\overline{y})$
3	-7	49	12	5	25	-35
9	-1	1	5	-2	4	2
18	8	64	4	-3	9	-24
30	0	114	21	0	38	-57

$$\overline{x} = 10$$
, $\overline{y} = 7$

$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{-57}{114} = -\frac{1}{2}$$

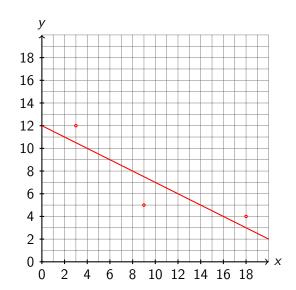
$$b = \overline{y} - a \cdot \overline{x} = 12$$

$$\overline{x} = 10$$
, $\overline{y} = 7$

$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{-57}{114} = -\frac{1}{2}$$

$$b = \overline{y} - a \cdot \overline{x} = 12$$

Regressionsgerade:
$$y = -\frac{1}{2} \cdot x + 12$$


$$\overline{x} = 10$$
, $\overline{y} = 7$

$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{-57}{114} = -\frac{1}{2}$$

$$b = \overline{v} - a \cdot \overline{x} = 12$$

Regressionsgerade: $y = -\frac{1}{2} \cdot x + 12$

Korrelation:
$$r_{xy} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (y_i - \bar{y})} \sqrt{\sqrt{232}}} = -0.865$$

Gegeben ist folgende gepaarte Stichprobe:

- ▶ Bestimme die Gleichung der Regressionsgeraden.
- Berechne den Korrelationskoeffizienten.
- Skizziere das Streudiagramm und die Ausgleichsgerade.

x_i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	Уi		$(y_i - \overline{y})^2$	$(x_i-\overline{x})(y_i-\overline{y})$
9	2	4	14	4	16	8
13	6	36	15	5	25	30
1	-6	36	4	-6	36	36
5	-2	4	7	-3	9	6
28	0	80	40	0	86	80

x_i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$				$(x_i-\overline{x})(y_i-\overline{y})$
9	2	4		4	16	8
13	6	36	15	5	25	30
1	-6	36	4	-6	36	36
5	-2	4	7	-3	9	6
28	0	80	40	0	86	80

$$\overline{x} = 7$$
, $\overline{y} = 10$

Xi	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	Уi	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	$(x_i-\overline{x})(y_i-\overline{y})$
9	2	4	14	4	16	8
13	6	36	15	5	25	30
1	-6	36	4	-6	36	36
5	-2	4	7	-3	9	6
28	0	80	40	0	86	80

$$\overline{x} = 7$$
, $\overline{y} = 10$

$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{80}{80} = 1$$

Xi	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	Уi	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	$(x_i-\overline{x})(y_i-\overline{y})$
9	2	4	14	4	16	8
13	6	36	15	5	25	30
1	-6	36	4	-6	36	36
5	-2	4	7	-3	9	6
28	0	80	40	0	86	80

$$\overline{x} = 7$$
, $\overline{y} = 10$

$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{80}{80} = 1$$

$$b = \overline{y} - a \cdot \overline{x} = 3$$

Xi	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	Уi	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	$(x_i-\overline{x})(y_i-\overline{y})$
9	2	4	14	4	16	8
13	6	36	15	5	25	30
1	-6	36	4	-6	36	36
5	-2	4	7	-3	9	6
28	0	80	40	0	86	80

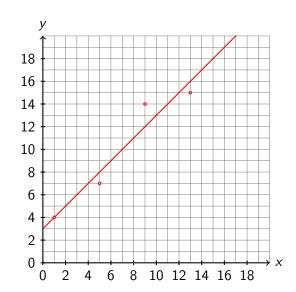
$$\overline{x} = 7$$
, $\overline{y} = 10$

$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{80}{80} = 1$$

$$b = \overline{y} - a \cdot \overline{x} = 3$$

Regressionsgerade: $y = 1 \cdot x + 3$

$$\overline{x} = 7$$
, $\overline{y} = 10$


$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{80}{80} = 1$$

$$b = \overline{y} - a \cdot \overline{x} = 3$$

Regressionsgerade: $y = 1 \cdot x + 3$

Korrelation:
$$r_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})(y_i - \overline{y})}$$

Gegeben ist folgende gepaarte Stichprobe:

- Bestimme die Gleichung der Regressionsgeraden.
- Berechne den Korrelationskoeffizienten.
- Skizziere das Streudiagramm und die Ausgleichsgerade.

x_i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	Уi	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	$(x_i-\overline{x})(y_i-\overline{y})$
16	4	16	9	-3	9	-12
13	1	1	12	0	0	0
9	-3	9	14	2	4	-6
10	-2	4	13	1	1	-2
48	0	30	48	0	14	-20

x_i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	Уi			$(x_i-\overline{x})(y_i-\overline{y})$
16	4	16	9	-3	9	-12
13	1	1	12	0	0	0
9	-3	9	14	2	4	-6
10	-2	4	13	1	1	-2
48	0	30	48	0	14	-20

$$\overline{x} = 12$$
, $\overline{y} = 12$

Xi	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	Уi	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	$(x_i-\overline{x})(y_i-\overline{y})$
16	4	16	9	-3	9	-12
13	1	1	12	0	0	0
9	-3	9	14	2	4	-6
10	-2	4	13	1	1	-2
48	0	30	48	0	14	-20

$$\overline{x} = 12$$
, $\overline{y} = 12$

$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{-20}{30} = -\frac{2}{3}$$

Xi	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	Уi	$y_i - \overline{y}$		$(x_i-\overline{x})(y_i-\overline{y})$
16	4	16	9	-3	9	-12
13	1	1	12	0	0	0
9	-3	9	14	2	4	-6
10	-2	4	13	1	1	-2
48	0	30	48	0	14	-20

$$\overline{x} = 12$$
, $\overline{y} = 12$

$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{-20}{30} = -\frac{2}{3}$$

$$b = \overline{y} - a \cdot \overline{x} = 20$$

x _i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	Уi	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	$(x_i-\overline{x})(y_i-\overline{y})$
16	4	16	9	-3	9	-12
13	1	1	12	0	0	0
9	-3	9	14	2	4	-6
10	-2	4	13	1	1	-2
48	0	30	48	0	14	-20

$$\overline{x} = 12$$
, $\overline{y} = 12$

$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{-20}{30} = -\frac{2}{3}$$

$$b = \overline{y} - a \cdot \overline{x} = 20$$

Regressionsgerade: $y = -\frac{2}{3} \cdot x + 20$

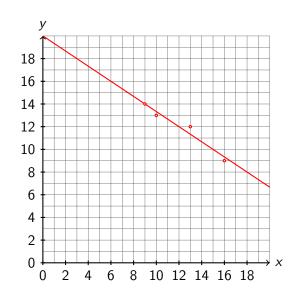
$$x_i$$
 $x_i - \overline{x}$
 $(x_i - \overline{x})^2$
 y_i
 $y_i - \overline{y}$
 $(y_i - \overline{y})^2$
 $(x_i - \overline{x})(y_i - \overline{y})$

 16
 4
 16
 9
 -3
 9
 -12

 13
 1
 1
 12
 0
 0
 0

 9
 -3
 9
 14
 2
 4
 -6

 10
 -2
 4
 13
 1
 1
 -2


 48
 0
 30
 48
 0
 14
 -20

$$\overline{x} = 12$$
, $\overline{y} = 12$

$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{-20}{30} = -\frac{2}{3}$$

$$b = \overline{y} - a \cdot \overline{x} = 20$$

Regressionsgerade: $y = -\frac{2}{3} \cdot x + 20$

Gegeben ist folgende gepaarte Stichprobe:

- Bestimme die Gleichung der Regressionsgeraden.
- Berechne den Korrelationskoeffizienten.
- Skizziere das Streudiagramm und die Ausgleichsgerade.

Xi	$x_i - \overline{x}$	$(x_i - \overline{x})^2$				$(x_i-\overline{x})(y_i-\overline{y})$
7	2	4	17	3	9	6
3	-2	4	13	-1	1	2
6	1	1	15	1	1	1
4	-1	1	11	-3	9	3
20	0	10	56	0	20	12

Xi	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	Уi	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	$(x_i-\overline{x})(y_i-\overline{y})$
7	2	4	17	3	9	6
3	-2	4	13	-1	1	2
6	1	1	15	1	1	1
4	-1	1	11	-3	9	3
20	0	10	56	0	20	12

$$\overline{x} = 5$$
, $\overline{y} = 14$

$$\overline{x} = 5$$
, $\overline{y} = 14$

$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{12}{10} = \frac{6}{5}$$

Xi	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	Уi	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	$(x_i-\overline{x})(y_i-\overline{y})$
-		4	_	-	_	6
3	-2	4	13	-1	1	2
6	1	1	15	1	1	1
4	-1	1	11	-3	9	3
20	0	10	56	0	20	12

$$\overline{x} = 5$$
, $\overline{y} = 14$

$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{12}{10} = \frac{6}{5}$$

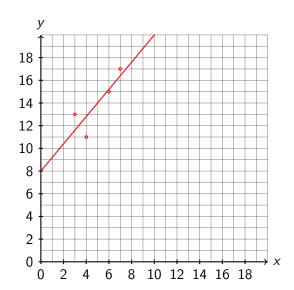
$$b = \overline{y} - a \cdot \overline{x} = 8$$

$$\overline{x} = 5$$
, $\overline{y} = 14$

$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{12}{10} = \frac{6}{5}$$

$$b = \overline{y} - a \cdot \overline{x} = 8$$

Regressionsgerade: $y = \frac{6}{5} \cdot x + 8$


$$\overline{x} = 5$$
, $\overline{y} = 14$

$$a = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{12}{10} = \frac{6}{5}$$

$$b = \overline{y} - a \cdot \overline{x} = 8$$

Regressionsgerade: $y = \frac{6}{5} \cdot x + 8$

$$\sum (x_i - \overline{x})(y_i - \overline{y})$$

Für vier Messreihen wurden die empirischen Korrelationen ermittelt. Ordne diese Werte den folgenden Grafiken zu.

$$r_{xy} = 0.946$$
 $r_{xy} = -0.996$ $r_{xy} = 0.021$ $r_{xy} = -0.344$

(a) y
(b) y
(c) y
(d) y

- (a) $r_{xy} = 0.021$
- (b) $r_{xy} = -0.344$
- (c) $r_{xy} = 0.946$
- (d) $r_{xy} = -0.996$

Rex Boggs, Glenmore State High School, Rockhampton, Queensland, Australia hat untersucht, wie sich das Gewicht eines Stücks Seife im Laufe der Zeit verändert.

Date	Day	Weight	Date	Day	Weight
30.8.1999	0	124	10.9.19	99 11	58
31.8.1999	1	121	11.9.19	99 12	50
3.9.1999	4	103	16.9.19	99 17	27
4.9.1999	5	96	18.9.19	99 19	16
5.9.1999	6	90	19.9.19	99 20	12
6.9.1999	7	84	20.9.19	99 21	8
7.9.1999	8	78	21.9.19	99 22	6
8.9.1999	9	71			

Am 22.9.1999 zerbrach das Seifenstück in zwei Teile und eines davon verschwand im Abfluss.

Erstelle ein lineares Modell für die Abhängigkeit des Seifengewichts von ihrer Lebensdauer und berechne das Bestimmheitsmass.

Modell:
$$\hat{y} = \beta_0 + \beta_1 \cdot t$$

TR:
$$\hat{y} = 123.1 - 5.575 \cdot t$$

$$r = 0.9953$$