Bestimme das Bildungsgesetz Übungen

Bestimme eine explizite Formel $(a_n = \dots)$ für die gegebenen Folgeglieder.

8, 9, 10, 11, 12, 13, 14, ...

 $8,\ 9,\ 10,\ 11,\ 12,\ 13,\ 14,\ \dots$

$$a_n = n + 7$$

 $2, 1, 0, -1, -2, -3, -4, \dots$

2, 1, 0,
$$-1$$
, -2 , -3 , -4 , ...
$$a_n = 3 - n$$

8, 13, 18, 23, 28, 33, 38, . . .

8, 13, 18, 23, 28, 33, 38, ... $a_n = 5 n + 3$

$$-7$$
, -9 , -11 , -13 , -15 , -17 , -19 , ...

$$-7$$
, -9 , -11 , -13 , -15 , -17 , -19 , ... $a_n = -2 \, n - 5$

 $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$, $\frac{6}{7}$, $\frac{7}{8}$, ...

$$\frac{1}{2}$$
, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$, $\frac{6}{7}$, $\frac{7}{8}$, ...

$$a_n = \frac{n}{n+1}$$

 $0, \frac{1}{4}, \frac{2}{5}, \frac{1}{2}, \frac{4}{7}, \frac{5}{8}, \frac{2}{3}, \dots$

$$0, \ \tfrac{1}{4}, \ \tfrac{2}{5}, \ \tfrac{1}{2}, \ \tfrac{4}{7}, \ \tfrac{5}{8}, \ \tfrac{2}{3}, \ \ldots$$

$$a_n = \frac{n-1}{n+2}$$

25, 36, 49, 64, 81, 100, 121, ...

25, 36, 49, 64, 81, 100, 121, ... $a_n = (n+4)^2$

2, 5, 10, 17, 26, 37, 50, ...

2, 5, 10, 17, 26, 37, 50, ... $a_n = n^2 + 1$

2, 8, 16, 26, 38, 52, 68, . . .

2, 8, 16, 26, 38, 52, 68, . . .

Differenzenfolge 1. Ordnung: 6, 8, 10, 12, 14, 16, ...

Differenzenfolge 2. Ordnung: 2, 2, 2, 2, 2, ...

Also muss die Folge eine Definitionsgleichung der Form $a_n=xn^2+yn+z$ haben. Dies lässt sich dazu nutzen, ein Gleichungssystem aufzustellen.

$$a_1 = 1^2 \cdot x + 1 \cdot y + z = 2$$

$$a_2 = 2^2 \cdot x + 2 \cdot y + z = 8$$

$$a_3 = 3^2 \cdot x + 3 \cdot y + z = 16$$

Taschenrechner (sys-solv):
$$x = 1$$
, $y = 3$, $z = 2 \Rightarrow a_n = n^2 + 3n - 2$

 $0, -1, 0, 3, 8, 15, 24, \dots$

 $0, -1, 0, 3, 8, 15, 24, \dots$

Differenzenfolge 1. Ordnung: -1, 1, 3, 5, 7, 9, ...

Differenzenfolge 2. Ordnung: 2, 2, 2, 2, 2, 2, ...

Also muss die Folge eine Definitionsgleichung der Form $a_n = xn^2 + yn + z$ haben. Dies lässt sich dazu nutzen, ein Gleichungssystem aufzustellen.

$$a_1 = 1^2 \cdot x + 1 \cdot y + z = 0$$

$$a_2 = 2^2 \cdot x + 2 \cdot y + z = -1$$

$$a_3 = 3^2 \cdot x + 3 \cdot y + z = 0$$

Taschenrechner (sys-solv):
$$x = 1$$
, $y = -4$, $z = 3 \Rightarrow a_n = n^2 - 4n + 3$

-1, 1, -1, 1, -1, 1, -1, ...

$$-1$$
, 1, -1 , 1, -1 , 1, -1 , ...
$$a_n = (-1)^n$$

 $1, -1, 1, -1, 1, -1, 1, \dots$

1, -1, 1, -1, 1, -1, 1, . . . $a_n = (-1)^{n+1} = -(-1)^n = (-1)^{n-1}$ (es gibt noch weitere richtige Lösungen)

10, 20, 40, 80, 160, 320, 640, ...

10, 20, 40, 80, 160, 320, 640, ... $a_n = 10 \cdot 2^{n-1} = 5 \cdot 2^1 \cdot 2^{n-1} = 5 \cdot 2^n$

27, 9, 3, 1, $\frac{1}{3}$, $\frac{1}{9}$, $\frac{1}{27}$, ...

27, 9, 3, 1, $\frac{1}{3}$, $\frac{1}{9}$, $\frac{1}{27}$, ...

$$a_n = 27 \cdot \left(\frac{1}{3}\right)^{n-1} = 27 \cdot \left(\frac{1}{3}\right)^n \cdot \left(\frac{1}{3}\right)^{-1} = 81 \cdot \left(\frac{1}{3}\right)^{-n} = 81 \cdot 3^{-n} = 3^4 \cdot 3^{-n} = 3^{4-n}$$

-4, 16, -64, 256, -1024, 4096, -16384, ...

$$-4$$
, 16, -64 , 256, -1024 , 4096, -16384 , ...
$$a_n = (-4)^n$$

 $11,\ 101,\ 1001,\ 10001,\ 100001,\ 1000001,\ 10000001,\ \dots$

```
11, 101, 1001, 10001, 100001, 1000001, 10000001, ... a_n = 10^n + 1
```

9, 99, 999, 9999, 999999, 9999999, ...

9, 99, 999, 9999, 999999, 9999999, ... $a_n = 10^n - 1$

 $2,\ 22,\ 222,\ 2222,\ 22222,\ 222222,\ 2222222,\ \ldots$

$$a_n = \frac{2}{9} \cdot \left(10^n - 1\right)$$